References
[1]. Abdullahi, M. B., Rajaei, K., Junin, R., & Bayat, A. E.
(2019). Appraising the impact of metal-oxide nanoparticles
on rheological properties of HPAM in different electrolyte
solutions for enhanced oil recovery. Journal of Petroleum Science and Engineering, 172, 1057-1068. https://doi.org/10.1016/j.petrol.2018.09.013
[2]. Alsaba, M. T., Al Dushaishi, M. F., & Abbas, A. K. (2020).
A comprehensive review of nanoparticles applications in
the oil and gas industry. Journal of Petroleum Exploration
and Production Technology, 10(4), 1389-1399. https://doi.org/10.1007/s13202-019-00825-z
[3]. Agbasimalo, N., & Radonjic, M. (2012). Experimental
study of the impact of drilling fluid contamination on the
integrity of cement-formation interface. Journal of Energy
Resources Technology, 136(4). https://doi.org/10.1115/OMAE2012-84237
[4]. Amanullah, M., & Al-Tahini, A. M. (2009, May). Nanotechnology-
its significance in smart fluid development for
oil and gas field application. In SPE Saudi Arabia Section
Technical Symposium, Article SPE-126102-MS. https://doi.org/10.2118/ 126102-MS
[5]. Chong, J. Z., Sutan, N. M., & Yakub, I. (2013).
Characterization of early pozzolanic reaction of calcium
hydroxide and calcium silicate hydrate for nanosilica
modified cement paste. Journal of Civil Engineering,
Science and Technology, 4(3), 6-10. https://doi.org/10.33736/jcest.120.2013
[6]. Campillo, I., Guerrero, A., Dolado, J. S., Porro, A.,
Ibáñez, J. A., & Goñi, S. (2007). Improvement of initial
mechanical strength by nanoalumina in belite cements.
Materials Letters, 61(8-9), 1889-1892. https://doi.org/10.1016/j.matlet.2006.07.150
[7]. Chithra, S., Kumar, S. S., & Chinnaraju, K. (2016). The
effect of colloidal nano-silica on workability, mechanical
and durability properties of high performance concrete
with copper slag as partial fine aggregate. Construction
and Building Materials, 113, 794-804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
[8]. Chen, F., & Qiao, P. (2015). Probabilistic damage
modeling and service-life prediction of concrete under
freeze–thaw action. Materials and Structures, 48(8),
2697-2711. https://doi.org/10.1617/s11527-014-0347-y
[9]. Deshpande, A., & Patil, R. (2017, March). Applications
of nanotechnology in oilwell cementing. In SPE Middle
East Oil & Gas Show and Conference. Article SPE-183727-MS. https://doi.org/10.2118/183727-MS
[10]. Du, S., Wu, J., AlShareedah, O., & Shi, X. (2019).
Nanotechnology in cement-based materials: A review of
durability, modeling, and advanced characterization.
Nanomaterials, 9(9), Article 1213. https://doi.org/10.3390/nano 9091213
[11]. Fakoya, M. F., & Shah, S. N. (2017). Emergence of
nanotechnology in the oil and gas industry: Emphasis on
the application of silica nanoparticles. Petroleum, 3(4),
391-405. https://doi.org/10.1016/j.petlm.2017.03.001
[12]. Flores-Vivian, I., Pradoto, R. G., Moini, M.,
Kozhukhova, M., Potapov, V., & Sobolev, K. (2017). The
effect of SiO2 nanoparticles derived from hydrothermal
solutions on the performance of portland cement based
materials. Frontiers of Structural and Civil Engineering,
11(4), 436-445. https://doi.org/10.1007/s11709-017-0438-2
[13]. Gowda, R., Narendra, H., Rangappa, D., &
Prabhakar, R. (2017). Effect of nano-alumina on
workability, compressive strength and residual strength at
elevated temperature of cement mortar. Materials
Today: Proceedings, 4(11), 12152-12156. https://doi.org/10.1016/j.matpr.2017.09.144
[14]. Hou, P., Kawashima, S., Kong, D., Corr, D. J., Qian, J.,
& Shah, S. P. (2013). Modification effects of colloidal
nanoSiO2 on cement hydration and its gel property.
Composites Part B: Engineering, 45(1), 440-448.
https://doi.org/10.1016/j.compositesb.2012.05.056
[15]. Jayapalan, A. R., Lee, B. Y., Fredrich, S. M., & Kurtis, K.
E. (2010). Influence of additions of anatase TiO2
nanoparticles on early-age properties of cement-based
materials. Transportation Research Record, 2141(1), 41-46. https://doi.org/10.3141/2141-08
[16]. Jimenez, W. C., Urdaneta, J. A., Pang, X., Garzon, J.
R., Nucci, G., & Arias, H. (2016, April). Innovation of
annular sealants during the past decades and their direct
relationship with on/offshore wellbore economics. In SPE
Bergen One Day Seminar, Article SPE-180041-MS.
https://doi.org/10.2118/180041-MS
[17]. Kadri, E. H., & Duval, R. (2009). Hydration heat
kinetics of concrete with silica fume. Construction and Building Materials, 23(11), 3388-3392. https://doi.org/10.1016/j.conbuildmat.2009.06.008
[18]. Kozlova, I. V., Zemskova, O. V., Semenov, V. S., &
Stepina, I. V. (2021, March). Effect of nano-aluminum
component on the cement properties. IOP Conference
Series: Materials Science and Engineering, 1079(3),
Article 032071. https://doi.org/10.1088/1757-899x/1079/3/032071
[19]. Lee, B. Y., Jayapalan, A. R., & Kurtis, K. E. (2013).
Effects of nano-TiO2 on properties of cement-based materials. Magazine of Concrete Research, 65(21),
1293-1302. https://doi.org/10.1680/macr.13.00131
[20]. Li, Z., Wang, H., He, S., Lu, Y., & Wang, M. (2006).
Investigations on the preparation and mechanical
properties of the nano-alumina reinforced cement
composite. Materials Letters, 60(3), 356-359. https://doi.org/10.1016/j.matlet.2005.08.061
[21]. Maagi, M. T., Lupyana, S. D., & Jun, G. (2020a).
Nanotechnology in the petroleum industry: Focus on
the use of nanosilica in oil-well cementing applications-
A review. Journal of Petroleum Science and Engineering,
193, 107397. https://doi.org/10.1016/j.petrol.2020.107397
[22]. Maagi, M. T., Lupyana, S. D., & Gu, J. (2019). Effect
of nano-SiO2 , nano-TiO2 and nano-Al2O3 addition on fluid
loss in oil-well cement slurry. International Journal of
Concrete Structures and Materials, 13(1), 1-6. https://doi.org/10.1186/s40069-019-0371-y
[23]. Maagi, M. T., Pin, G., & Jun, G. (2020b). Influence of
nano-TiO2 on the wellbore shear bond strength at cement-
formation interface. Upstream Oil and Gas Technology,
5, Article 100016. https://doi.org/10.1016/j.upstre.2020.100016
[24]. Mansoor, H. H. A., Devarapu, S. R., Samuel, R.,
Sharma, T., & Ponmani, S. (2021). Experimental
investigation of aloe-vera-based CuO nanofluid as a
novel additive in improving the rheological and filtration
properties of water-based drilling fluid. SPE Drilling &
Completion, 36(03), 542-551. https://doi.org/10.2118/205004-PA
[25]. Mansoor, H. H. A., Devarapu, S. R., Samuel, R.,
Sangwai, J. S., & Ponmani, S. (2022). Investigation of chia based copper oxide nanofluid for water based drilling
fluid: An experimental approach. Journal of Natural Gas
Science and Engineering, 107, 104775. https://doi.org/10.1016/j.jngse.2022.104775
[26]. Mohseni, E., Miyandehi, B. M., Yang, J., & Yazdi, M.
A. (2015). Single and combined effects of nano-SiO2,
nano-Al2O3 and nano-TiO2 on the mechanical, rheological
and durability properties of self-compacting mortar
containing fly ash. Construction and Building Materials,
84, 331-340. https://doi.org/10.1016/j.conbuildmat.2015.03.006
[27]. Pang, X., Boul, P. J., & Jimenez, W. C. (2014). Nanosilicas
as accelerators in oilwell cementing at low temperatures.
In IADC/SPE Drilling Conference and Exhibition, Article
SPE-168037-MS. https://doi.org/ 10.2118/168037-MS
[28]. Ponmani, S., Kumar, G., Khan, S., Babu, A. N., Reddy,
M., Kumar, G. S., & Reddy, D. S. (2019). Improvement of
anti-sag and rheological properties of water based muds
using nano-barite. Materials Today: Proceedings, 17(1),
176-185. https://doi.org/10.1016/j.matpr.2019.06.416
[29]. Radonjic, M., & Oyibo, A. (2015). Comparative
experimental evaluation of drilling fluid contamination on
shear bond strength at wellbore cement interfaces. World
Journal of Engineering, 11(6), 597-604. https://doi.org/10.1260/1708-5284.11.6.597
[30]. Ravi, K., Bosma, M., & Gastebled, O. (2002, April).
Safe and economic gas wells through cement design for
life of the well. In SPE Gas Technology Symposium, Article
SPE-75700-MS. https://doi.org/10.2118/75700-MS
[31]. Rai, S., & Tiwari, S. (2018). Nano silica in cement
hydration. Materials Today: Proceedings, 5(3), 9196-9202. https://doi.org/10.1016/j.matpr.2017.10.044
[32]. Shadravan, A., Schubert, J., Amani, M., & Teodoriu,
C. (2014, March). HPHT cement sheath integrity evaluation
method for unconventional wells. In SPE International
Conference on Health, Safety, and Environment, Article
SPE-168321-MS. https://doi.org/10.2118/168321-MS
[33]. Shaik, A. H., & Reddy, D. S. (2017). Formation of 2D
and 3D superlattices of silver nanoparticles inside an
emulsion droplet. Materials Research Express, 4(3), Article
035043. https://doi.org/10.1088/2053-1591/aa5e5b
[34]. Santra, A., Boul, P. J., & Pang, X. (2012, June).
Influence of nanomaterials in oilwell cement hydration
and mechanical properties. In SPE International Oilfield
Nanotechnology Conference and Exhibition, Article SPE-156937-MS. https://doi.org/10.2118/156937-MS
[35]. Silvestre, J. P. T. (2015). Nanotechnology in construction:
Towards structural applications. [Postgraduate dissertation].
Department of Civil Engineering, Instituto Superior
Técnico, University of Lisbon, Lisbon, Portugal.
[36]. Teixeira, K. P., Rocha, I. P., De Sá Carneiro, L., Flores,
J., Dauer, E. A., & Ghahremaninezhad, A. (2016). The
effect of curing temperature on the properties of cement pastes modified with TiO2 nanoparticles. Materials, 9(11),
(pp. 952). https://doi.org/10.3390/ma9110952
[37]. Wang, C., Wang, R., Li, H., Bu, Y., & Zhou, W. (2011).
Design and performance evaluation of a unique
deepwater cement slurry. SPE Drilling & Completion,
26(02), 220-226. https://doi.org/10.2118/130266-PA
[38]. Wang, L., Zhang, H., & Gao, Y. (2018). Effect of TiO2
nanoparticles on physical and mechanical properties of
cement at low temperatures. Advances in Materials
Science and Engineering. https://doi.org/10.1155/2018/
8934689