A Review of Reverse Osmosis Process for Seawater Desalination

Kumargaurao D. Punase*
Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
Periodicity:August - October'2022

Abstract

The freshwater availability in many regions of the world has been a rising concern for the last few decades due to disturbing increase in population, urbanization, and industrial advancement. As water consumption is increasing year by year, the obvious solution to the freshwater shortage is to increase its supply. Desalination has been a prominent process to produce fresh water in numerous water-stressed regions to counteract the water shortage issues. Amongst the various desalination methods, the reverse osmosis method is used for generating fresh water from saline or brackish water by removing salts to make it suitable for human utilization, agriculture, and industrial purposes. In the present study, a systematic review of the seawater reverse osmosis process is presented to address the developments in the pretreatment, membrane, and post-treatment processes of reverse osmosis.

Keywords

Desalination, Reverse Osmosis, Pretreatment, Membrane, Post-Treatment.

How to Cite this Article?

Punase, K. D. (2022). A Review of Reverse Osmosis Process for Seawater Desalination. i-manager’s Journal on Future Engineering Technology, 18(1), 26-35.

References

[1]. Abdulkarem, E., Ahmed, I., Abu-Zahra, M. R. M., & Hasan, S. W. (2017). Electrokinetic pretreatment of seawater to decrease the Ca2+, Mg2+, SO42- and bacteria contents in membrane desalination applications. Desalination, 403, 107-116. https://doi.org/10.1016/j.desal.2016.06.004
[2]. Al-Ghamdi, M. A., Alhadidi, A., & Ghaffour, N. (2019). Membrane backwash cleaning using CO2 nucleation. Water Research, 165, 114985. https://doi.org/10.1016/j.watres.2019.114985
[3]. Alnajjar, H., Tabatabai, A., Alpatova, A., Leiknes, T., & Ghaffour, N. (2021). Organic fouling control in reverse osmosis (RO) by effective membrane cleaning using saturated CO2 solution. Separation and Purification Technology, 264, 118410. https://doi.org/10.1016/j.seppur.2021.118410
[4]. Anis, S. F., Hashaikeh, R., & Hilal, N. (2019). Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, 452, 159-195. https://doi.org/10.1016/j.desal.2018.11.006
[5]. Baker, J. S., & Dudley, L. Y. (1998). Biofouling in membrane systems—A review. Desalination, 118(1-3), 81-89. https://doi.org/10.1016/S0011-9164(98)00091-5
[6]. Bereschenko, L. A., Stams, A. J. M., Euverink, G. J. W., & Van Loosdrecht, M. C. M. (2010). Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp. Applied and Environmental Microbiology, 76(8), 2623-2632. https://doi.org/10.1128/AEM.01998-09
[7]. Beyer, F., Laurinonyte, J., Zwijnenburg, A., Stams, A. J., & Plugge, C. M. (2017). Membrane fouling and chemical cleaning in three full-scale reverse osmosis plants producing demineralized water. Journal of Engineering, 2017. https://doi.org/10.1155/2017/6356751
[8]. Birnhack, L., Voutchkov, N., & Lahav, O. (2011). Fundamental chemistry and engineering aspects of posttreatment processes for desalinated water—A review. Desalination, 273(1), 6-22. https://doi.org/10.1016/j.desal.2010.11.011
[9]. Cui, Z. F., Chang, S., & Fane, A. G. (2003). The use of gas bubbling to enhance membrane processes. Journal of Membrane Science, 221(1-2), 1-35. https://doi.org/10.1016/S0376-7388(03)00246-1
[10]. Daer, S., Kharraz, J., Giwa, A., & Hasan, S. W. (2015). Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 367, 37-48. https://doi.org/10.1016/j.desal.2015.03.030
[11]. Delion, N., Mauguin, G., & Corsin, P. (2004). Importance and impact of post treatments on design and operation of SWRO plants. Desalination, 165, 323-334. https://doi.org/10.1016/j.desal.2004.06.037
[12]. Delyianni, E., & Belessiotis, B. (1995). Methods and desalination systems-principles of the desalination process. NCSR “Demokritos”, Athens, Greece.
[13]. Ducom, G., Puech, F. P., & Cabassud, C. (2002). Air sparging with flat sheet nanofiltration: A link between wall shear stresses and flux enhancement. Desalination, 145(1-3), 97-102. https://doi.org/10.1016/S0011-9164(02)00392-2
[14]. Emadzadeh, D., Lau, W. J., Matsuura, T., Rahbari- Sisakht, M., & Ismail, A. F. (2014). A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 237, 70-80. https://doi.org/10.1016/j.cej.2013.09.081
[15]. Fiorenza, G., Sharma, V. K., & Braccio, G. (2003). Techno-economic evaluation of a solar powered water desalination plant. Energy Conversion and Management, 44(14), 2217-2240. https://doi.org/10.1016/S0196-8904(02)00247-9
[16]. Goh, P. S., Matsuura, T., Ismail, A. F., & Hilal, N. (2016). Recent trends in membranes and membrane processes for desalination. Desalination, 391, 43-60. https://doi.org/10.1016/j.desal.2015.12.016
[17]. Henthorne, L., & Boysen, B. (2015). State-of-the-art of reverse osmosis desalination pretreatment. Desalination, 356, 129-139. https://doi.org/10.1016/j.desal.2014.10.039
[18]. Ismail, A. F., Padaki, M., Hilal, N., Matsuura, T., & Lau, W. J. (2015). Thin film composite membrane-Recent development and future potential. Desalination, 356, 140-148. https://doi.org/10.1016/j.desal.2014.10.042
[19]. Karkhanechi, H., Razi, F., Sawada, I., Takagi, R., Ohmukai, Y., & Matsuyama, H. (2013). Improvement of antibiofouling performance of a reverse osmosis membrane through biocide release and adhesion resistance. Separation and Purification Technology, 105, 106-113. https://doi.org/10.1016/j.seppur.2012.12.016
[20]. Kavitha, J., Rajalakshmi, M., Phani, A. R., & Padaki, M. (2019). Pretreatment processes for seawater reverse osmosis desalination systems-A review. Journal of Water Process Engineering, 32, 100926. https://doi.org/10.1016/j.jwpe.2019.100926
[21]. Khoo, Y. S., Lau, W. J., Liang, Y. Y., Karaman, M., Gürsoy, M., & Ismail, A. F. (2020). A green approach to modify surface properties of polyamide thin film composite membrane for improved antifouling resistance. Separation and Purification Technology, 250, Article 116976. https://doi.org/10.1016/j.seppur.2020.116976
[22]. Khoo, Y. S., Lau, W. J., Liang, Y. Y., Karaman, M., Gürsoy, M., Lai, G. S., & Ismail, A. F. (2021). Rapid and ecofriendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 9(3), 105227. https://doi.org/10.1016/j.jece.2021.105227
[23]. Kong, C., Kamada, T., Shintani, T., Kanezashi, M., Yoshioka, T., & Tsuru, T. (2011). Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted inter facial polymerization. Journal of Membrane Science, 366(1-2), 382-388. https://doi.org/10.1016/j.memsci.2010.10.026
[24]. Lee, J. J., Johir, M. A. H., Chinu, K. H., Shon, H. K., Vigneswaran, S., Kandasamy, J., & Shaw, K. (2009). Hybrid filtration method for pre-treatment of seawater reverse osmosis (SWRO). Desalination, 247(1-3), 15-24. https://doi.org/10.1016/j.desal.2008.12.008
[25]. Lesimple, A., Ahmed, F. E., & Hilal, N. (2020). Remineralization of desalinated water: Methods and environmental impact. Desalination, 496, 114692. https://doi.org/10.1016/j.desal.2020.114692
[26]. Liu, C. X., Zhang, D. R., He, Y., Zhao, X. S., & Bai, R. (2010). Modification of membrane surface for antibiofouling performance: Effect of anti-adhesion and antibacteria approaches. Journal of Membrane Science, 346(1), 121-130. https://doi.org/10.1016/j.memsci.2009.09.028
[27]. Martinez, H. (2010). Design of a desalination plant: Aspects to consider. [Under graduate thesis]. Faculty of Engineering and Sustainable Development, University of Gävle, Sweden.
[28]. Matin, A., Khan, Z., Zaidi, S. M. J., & Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination, 281, 1-16. https://doi.org/10.1016/j.desal.2011.06.063
[29]. Miller, J. E. (2003). Review of Water Resources and Desalination Technologies. CA: Sandia National Lab. https://doi.org/10.2172/809106
[30]. Misdan, N., Lau, W. J., & Ismail, A. F. (2012). Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects. Desalination, 287, 228-237. https://doi.org/10.1016/j.desal.2011.11.001
[31]. Monnot, M., Nguyên, H. T. K., Laborie, S., & Cabassud, C. (2017). Seawater reverse osmosis desalination plant at community-scale: Role of an innovative pretreatment on process performances and intensification. Chemical Engineering and Processing: Process Intensification, 113, 42-55. https://doi.org/10.1016/j.cep.2016.09.020
[32]. Ng, Z. C., Lau, W. J., Kartohardjono, S., & Ismail, A. F. (2020). Comprehensive studies of membrane rinsing on the physicochemical properties and separation performance of TFC RO membranes. Desalination, 491, Article 114345. https://doi.org/10.1016/j.desal.2020.114345
[33]. Ngene, I. S., Lammertink, R. G., Kemperman, A. J., van de Ven, W. J., Wessels, L. P., Wessling, M., & Van der Meer, W. G. (2010). CO2 nucleation in membrane spacer channels remove biofilms and fouling deposits. Industrial & Engineering Chemistry Research, 49(20), 10034-10039. https://doi.org/10.1021/ie1011245
[34]. Ong, C. S., Goh, P. S., Lau, W. J., Misdan, N., & Ismail, A. F. (2016). Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination, 393, 2-15. https://doi.org/10.1016/j.desal.2016.01.007
[35]. Prihasto, N., Liu, Q. F., & Kim, S. H. (2009). Pretreatment strategies for seawater desalination by reverse osmosis system. Desalination, 249(1), 308-316. https://doi.org/10.1016/j.desal.2008.09.010
[36]. Ramon, G. Z., Nguyen, T. V., & Hoek, E. M. (2013). Osmosis-assisted cleaning of organic-fouled seawater RO membranes. Chemical Engineering Journal, 218, 173-182. https://doi.org/10.1016/j.cej.2012.12.006
[37]. Ruiz, S. G., López-Ramírez, J. A., Zerrouk, M. H., Lopera, A. E. C., & Alonso, J. M. Q. (2020). Study of reverse osmosis membranes fouling by inorganic salts and colloidal particles during seawater desalination. Chinese Journal of Chemical Engineering, 28(3), 733-742. https://doi.org/10.1016/j.cjche.2019.10.004
[38]. Sanawar, H., Kim, L. H., Farhat, N. M., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2021). Periodic chemical cleaning with urea: Disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes. Water Research X, 13, Article 100117. https://doi.org/10.1016/j.wroa.2021.100117
[39]. Shon, H. K., Kim, S. H., Vigneswaran, S., Aim, R. B., Lee, S., & Cho, J. (2009). Physicochemical pretreatment of seawater: Fouling reduction and membrane characterization. Desalination, 238(1-3), 10-21. https://doi.org/10.1016/j.desal.2008.01.030
[40]. Sutzkover-Gutman, I., & Hasson, D. (2010). Feed water pretreatment for desalination plants. Desalination, 264(3), 289-296. https://doi.org/10.1016/j.desal.2010.07.014
[41]. Taniguchi, Y. (1997). An overview of pretreatment technology for reverse osmosis desalination plants in Japan. Desalination, 110(1-2), 21-35. https://doi.org/10.1016/S0011-9164(97)00081-7
[42]. Vial, D., & Doussau, G. (2003). The use of microfiltration membranes for seawater pre-treatment prior to reverse osmosis membranes. Desalination, 153 (1-3), 141-147. https://doi.org/10.1016/S0011-9164(02)01115-3
[43]. Voutchkov, N. (2010). Considerations for selection of seawater filtration pretreatment system. Desalination, 261(3), 354-364. https://doi.org/10.1016/j.desal.2010.07.002
[44]. WHO. (2009). Calcium and magnesium in drinking water: Public health significance. Retrieved from https://www.who.int/publications/i/item/9789241563550
[45]. WHO. (2019). Drinking Water. Retrieved from https://www.who.int/news-room/fact-sheets/detail/drinkingwater
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.