A Comprehensive Study on Wireless Optical Space Communication Techniques

G. Karpagarajesh*, Helen Vedanayagi Anita R.**
*-** Department of Electronics and Communication Engineering, Government College of Engineering, Tirunelveli, Tamilnadu, India.
Periodicity:May - July'2019
DOI : https://doi.org/10.26634/jcs.8.3.16997

Abstract

After the advent of telephone communication, the quest of mankind for wireless mobile communication through free space started evolving as a field of innovation. Free Space Optical (FSO) communication is a growing technology which propagates the light waves to transmit and receive the data wirelessly. This paper emphasizes the study of optical wireless communication through space for high speed data transmission, improving the quality factor, minimizing bit error rate (BRT), maximizing SNR, and the ways for preventing all type of losses occurred due to atmospheric turbulence. 5G communication is almost growing in all countries and the ways 5G network influences in today's market is higher. A detailed review on signal modulation and space turbulence models for good power efficiency and data security is also considered in this paper.

Keywords

Free Space Optics, Optical Wireless Communication, BER, Q factor, SNR.

How to Cite this Article?

Karpagarajesh, G., and Anita, H. V. R. (2019). A Comprehensive Study on Wireless Optical Space Communication Techniques. i-manager's Journal on Communication Engineering and Systems, 8(3), 28-42. https://doi.org/10.26634/jcs.8.3.16997

References

[1]. Alam, M. R., & Faruque, S. (2015). Comparison of different modulation techniques for free space laser communication. In 2015, IEEE International Conference on Electro/Information Technology (EIT) (pp. 637-640). https://doi.org/10.1109/eit.2015.7293409
[2]. Alam, S. J., Alam, M. R., Hu, G., & Mehrab, M. Z. (2011). Bit error rate optimization in fiber optic communications. International Journal of Machine Learning and Computing, 1(5), 435-440.
[3]. Alatawi, K., Almasoudi, F., & Matin, M. A. (2013). Performance study of 1 tbits/s wdm coherent optical ofdm system. Optics and Photonics Journal, 3(5), 330- 335. https://doi.org/10.4236/opj.2013.35051
[4]. Al-Habash, A., Andrews, L. C., & Phillips, R. L. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40(8), 1554-1563. https://doi.org/10.1117/1.1386641
[5]. Ali, M. A. A., & Ali, A. (2015). Performance analysis of fog effect on free space optical communication system. IOSR Journal of Applied Physics, 7(2), 16-24. https://doi. org/10.9790/4861-07211624
[6]. Anita, R. H. V. (2019). Implementation of 5G In guided and unguided optical communication system with cellular frequency bands. International Journal of Trend in Scientific Research and Development (IJTSRD), 3(6), 414- 416. https://doi.org/10.31142/ijtsrd28117
[7]. Anita, H. V., Princy, S. L. & Jenefer, W. (2020). Assessment of RZ and NRZ coders in free space multiplexing system with reduced attenuation effect and increased Q factor. Our Heritage Journal, 68(1), 8930- 8936. https://doi.org/10.2139/ssrn.35316274
[8]. Arain, S., Shaikh, M. N., Waqas, A., Chowdhry, B. S., & Themistos, C. (2016, July). Performance analysis of advance modulation schemes for free space optical networks. In 2016, 18th International Conference on Transparent Optical Networks (ICTON) (pp. 1-4). IEEE. https://doi.org/10.1109/ICTON.2016.7550491
[9]. Arshad, M., & Ansari, M. A. (2013). Performance analysis of dispersed manage RZ pulse. International Journal of Scientific Research Publications, 3(12), 1-3.
[10]. Badar, N., & Jha, R. K. (2017). Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model. Optical and Quantum Electronics, 49(5), 192. https://doi.org/10.1007/s11082-017-1025-4
[11]. Belmonte, A., & Kahn, J. M. (2009). Capacity of coherent free-space optical links using diversitycombining techniques. Optics Express, 17(15), 12601- 12611. https://doi.org/10.1364/OE.17.012601
[12]. Beri, B., & Kamal, N. (2014). WDM based FSO link optimizing for 180km using bessel filter. International Journal of Research in Engineering and Technology, 3(03), 110-115.
[13]. Bloom, S., Korevaar, E., Schuster, J., & Willebrand, H. (2003). Understanding the performance of free-space optics. Journal of optical Networking, 2(6), 178-200. https://doi.org/10.1364/JON.2.000178
[14]. Bohata, J., Komanec, M., Spáčil, J., Ghassemlooy, Z., Zvánovec, S., & Slavík, R. (2018). 24–26 GHz radioover- fiber and free-space optics for fifth-generation systems. Optics Letters, 43(5), 1035-1038. https://doi. org/10.1364/OL.43.001035
[15]. Cai, J., Cai, Y., Davidson, C., Foursa, D., Lucero, A., & Sinkin, O., Patterson, W. W., Pilipetskii, A. N., Mohs, G., & Bergano, N. S. (2011). Transmission of 96 x 100-Gb/s bandwidth-constrained PDM-RZQPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km. Journal of Lightwave Technology, 29(4), 491-498. https://doi.org/10.1109/JLT. 2010.2093931
[16]. Cai, Y. (2006). Propagation of some coherent and partially coherent laser beams (Doctoral dissertation) Royal Institute of Technology, S-10044 Stockholm, Sweden.
[17]. Chaudhary, S., & Amphawan, A. (2014). The role and challenges of free-space optical systems. Journal of Optical Communications, 35(4), 327-334. https://doi.org/ 10.1515/joc-2014-0004
[18]. Chávez-Santiago, R., Szydełko, M., Kliks, A., Foukalas, F., Haddad, Y., Nolan, K. E., Kelly, M. Y., Masonta, M. T. & Balasingham, I. (2015). 5 G: The convergence of wireless communications. Wireless Personal Communications, 83(3), 1617-1642 https://doi. org/10.1007/s11277-015- 2467-2
[19]. Chawla, A., Mishra, S., & Aarthi, G. (2015). Simulation research of free-space optical communication based on linear polarization shift keying modulation. ARPN Journal of Engineering and Applied Sciences, 10(14), 6116-6120.
[20]. Dar, A. B., & Jha, R. K. (2017). Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation. Optical and Quantum Electronics, 49(3), 108. https://doi.org/10.1007/ s11082-017-0944-4
[21]. David, F. (2004, June). Scintillation loss in free-space optic IM/DD systems. International Society for Optics and Photonics. 5338, 65-75. https://doi.org/10.1117/12.52 8832
[22]. Duvey, D., & Gupta, R. (2014). Review paper on performance analysis of a free space optical system. International Journal of Application or Innovation in Engineering & Management, 3(6), 135-139.
[23]. Ennser, K., & Petermann, K. (1996). Peformance of RZ-versus NRZ-transmission on standard single-mode fibers. IEEE Photonics Technology,8(3), 443-445. https:// doi.org/10.1109/68.481144
[24]. Fadhil, H. A., Amphawan, A., Shamsuddin, H. A., Abd, T. H., Al-Khafaji, H. M., Aljunid, S. A., & Ahmed, N. (2013). Optimization of free space optics parameters: An optimum solution for bad weather conditions. Optik, 124(19), 3969-3973. https://doi.org/10.1016/j.ijleo. 2012.11.059
[25]. Fludger, C. R., Duthel, T., Van den Borne, D., Schulien, C., Schmidt, E. D., Wuth, T., Geyer, J., Khoe, G. D. & de Waardt, H. (2008). Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. Journal of lightwave technology, 26(1), 64-72. https://doi.org/10.1109/JLT. 2007.912128
[26]. Forin, D. M., Incerti, G., Beleffi, G. T., Teixeira, A. L. J., Costa, L. N., Andrè, P. D. B., Geiger, S., Leitgeb, E., & Nadeem, F. (2010). Free space optical technologies. In Trends in Telecommunications Technologies, (pp 257-296).
[27]. Gebhart, M., Leitgeb, E., Birnbacher, U., & Schrotter, P. (2004, June). Ethernet access network based on freespace optic deployment technology. International Society for Optics and Photonics. 5338, 131-142. https:// doi.org/10.1117/12.528590
[28]. Gnauck, A. H., & Winzer, P. J. (2005). Optical phaseshift- keyed transmission. Journal of Lightwave Technology, 23(1), 115-130.
[29]. Grabner, M., & Kvicera, V. (2013). Multiple scattering in rain and fog on free-space optical links. Journal of Lightwave Technology, 32(3), 513-520. https://doi.org/10. 1109/JLT.2013.2294356
[30]. Gupta, A., Anand, P., Khajuria, R., Bhagat, S., & Jha, R. K. (2014). A sur vey of free space optical communication network channel over optical fiber cable communication. International Journal of Computer Applications, 105(10), 32-36.
[31]. Hammadi, A. M., & Zghair, E. M. (2014). Transmission performance analysis of three different channels in optical communication systems. International Journal of Scientific & Engineering Research, 5(2), 1615-1618.
[32]. Hanzra, T. S., & Singh, G. (2012). Performance of free space optical communication system with BPSK and QPSK modulation. IOSR Journal of Electronics and Communication Engineering, 1(3), 38-43.
[33]. He, J., Cao, Z., Chen, L., & Wen, S. (2010). Full-duplex radio-over-fiber system with quadrature-amplitudemodulation photonically generated orthogonal frequency-division multiplexing signals. Optical Engineering, 49(6), 1-5. https://doi.org/10.1117/1.34 54384
[34]. Henniger, H., & Wilfert, O. (2010). An introduction to free-space optical communications. Radio Engineering, 19(2), 203-212.
[35]. Huang, X. H., Li, C. Y., Lu, H. H., Su, C. W., Wu, Y. R., Wang, Z. H., & Chen, Y. N. (2018). WDM free-space optical communication system of high-speed hybrid signals. IEEE Photonics Journal, 10(6), 1-7. https://doi.org/10.1109/ JPHOT.2018.2881701
[36]. Iiyas, M. S. B., Rehman, A., &.Ibrahim, J. (2016). Per formance analysis of conventional diversity combining schemes over nakagami-m fading channel. International Journal of Computer Science and Information Security (IJCSIS), 14(8), 320-324.
[37]. Indira, N. S., Sony, K., Nagendram, S., Teja, P. R., Tej, G. H., & Kumar, E. P. (2017). A novel position estimation of gps receiver utilizing extended kalman filter. Journal of Advanced Research in Dynamical and Control Systems, 14, 2695-2701.
[38]. Ismail, T., Leitgeb, E., & Plank, T. (2016). Free space optic and mmWave communications: technologies, challenges and applications. IEICE Transactions on Communications, 99(6), 1243-1254. https://doi.org/10. 1587/transcom.2015EUI0002
[39]. Jabeena, A., & Saxena, S. (2015). Performance of FSO links using various modulation techniques and cloud effect. International Journal of Engineering Research and General Science, 3(2), 616-621.
[40]. Jangir, P., Suman, B., & Chaudhary, R. (2014). Free space optical interconnects security aspects of future high speed technology. International Journal of Computer Applications, 95(11), 39-42.
[41]. Jangir, P., Suman, B., & Chaudhary, R. (2014). Survey on performance of free space optical communication links under various field parameters. IOSR Journal of Electrical and Electronics Engineering, 9(2), 71-75.
[42]. Jarangal, E., & Dhawan, D. (2018). Comparison of channel models based on Atmospheric turbulences of FSO system-A Review. International Journal of Research in Electronics and Computer Engineering (IJRECE), 6(1), 282-286.
[43]. Jaswal, A., Singh, P. K., & Singh, Y. (2016). 5G: Survey of technologies and challenges. International Journal of Latest Trends in Engineering and Technology, 1-5.
[44]. Jawla, S., & Singh, R. K. (2013). Phase-shift modulation formats in optical communication system. International Journal of Advancements in Research & Technology, 2(11), 72-76.
[45]. Juan, W. (2016). Research on the modulation mode of wireless optical communication technology. In 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016), (pp 223-226).
[46]. Jyoti, D., Kaur, B., & Singh, K. (2014). Light polarized coherent OFDM free space optical system. International Journal of Information and Computation Technology, 4(14), 1367-1372.
[47]. Kasper, B. L., Mizuhara, O., & Chen, Y. K. (2002). High bit-rate receivers, transmitters, and electronics. In Optical Fiber Telecommunications IV-A (pp. 784-851). https://doi. org/10.1016/B978-012395172-4/50016-4
[48]. Kaur, S., Srivastava, M., & Bhatia, K. S. (2015). Radio over fiber technology: A review. In International Conference of Technology, Management and Social Sciences (Vol.5, No. 7, pp. 85-88).
[49]. Kaur, G., Singh, H., & Sappal, A. S. (2017). Free space optical using different modulation techniques–A Review. International Journal of Engineering Trends and Technology (IJETT), 43(2), 109-115. https://doi.org/10. 14445/22315381/IJETT-V43P218
[50]. Kaur, H., & Soni, G. (2015). Performance analysis of free space optical communication link using different modulation and wavelength. Journal of Scientific Research and Reports, 6(3), 201-209. https://doi.org/10. 9734/JSRR/2015/15503
[51]. Kaur, J., & Kaur, M. (2017). Review of WDM based free space optics communication system. International Journal of Advanced Research in Computer Science, 8(4), 286-288.
[52]. Kaushal, H., & Kaddoum, G. (2015). Free space optical communication: challenges and mitigation techniques. Cornell University (pp 1-28).
[53]. Kaushal, H., Jain, V. K., & Kar, S. (2017). Free Space Optical Communication (Vol.1). Gurgaon, Haryana: Springer. https://doi.org/10.1007/978-81-322-3691-7
[54]. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. https://doi.org/10.1109/COMST.2014. 2329501
[55]. Kim, I. I., & Korevaar, E. J. (2001, November). Availability of Free-space optics (FSO) and hybrid FSO/RF systems. International Society for Optics and Photonics. (Vol. 4530, pp. 84-95). https://doi.org/10.1117/12.449800
[56]. Kim, I. I., McArthur, B., & Korevaar, E. J. (2001, February). Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Optical Wireless Communications III, (Vol. 4214, pp. 26-37). International Society for Optics and Photonics. https://doi.org/10.1117/12.417512
[57]. Kuzhaloli, S., & Shaji, K. S. (2015). Performance analysis of MC-CDMA system in rayleigh channel using qpsk modulation. Indian Journal of Computer Science and Engineering, 6(1), 11-13.
[58]. Lee, H. (2017). Comments on performance analysis of coherent free-space optical systems with multiple receivers. IEEE Photonics Technology Letters, 29(24), 2262-2263. https://doi.org/10.1109/LPT.2017.2768359
[59]. Leitgeb, E., Bregenzer, J., Gebhart, M., Fasser, P., & Merdonig, A. (2003, July). Free-space optics: Broadband wireless supplement to fiber networks. International Society for Optics and Photonics. (Vol. 4975, pp. 57-68). https://doi.org/10.1117/12.483832
[60]. Leitgeb, E., Muhammad, S. S., Gebhart, M., & Chlestil, C. (2005). Hybrid wireless networks combining WLAN, FSO and satellite technology for disaster recovery. CiteSeerX. (pp. 1-5).
[61]. Letzepis, N., Holland, I., & Cowley, W. (2008). The gaussian free space optical MIMO channel with Q-ary pulse position modulation. IEEE Transactions on Wireless Communications, 7(5), 1744-1753. https://doi.org/10. 1109/TWC.2008.061002
[62]. Li, T., Zhang, J., Yi, H., Tan, W., Long, Q., Zhou, Z., Wang, X. & Wu, H. (2013). Low-voltage, high speed, compact silicon modulator for BPSK modulation. Optics Express, 21(20), 23410-23415. https://doi.org/10.1364/ OE.21.023410
[63]. Lin, H. S., & Lai, P. C. (2013). Single Mach-Zehnder modulator with RZ-DPSK modulation signal in 48 Chs× 40 Gbit/s long haul DWDM transmission. Journal of Optical Communications, 34(3), 155-160. https://doi.org/10.15 15/joc-2013-0009
[64]. Lin, H. S., & Lai, P. C. (2017). DWDM Transmission with LEAF and RDF Structure in 40 Gb/s Single MZM with RZ-DPSK Modulation. Journal of Optical Communications, 38(1), 41-46. https://doi.org/10.1515/joc-2015-0087
[65]. Magidi, S., & Jabeena, A. (2018). Review on wavelength division multiplexing free space optics. Journal of Optical Communications, 1-14. https:// doi.org/10.1515/joc-2017-0197
[66]. Majumdar, A. K. (2015). Theory of Free-Space Optical (FSO) Communication Signal Propagation Through Atmospheric Channel. In Advanced Free Space Optics (FSO) (pp. 21-67). New York, NY: Springer, https:// doi.org/10.1007/978-1-4939-0918-6_2
[67]. Malik, A., & Singh, P. (2015). Free space optics: current applications and future challenges. International Journal of Optics, 2015, 1-7. https://doi.org/10.1155/ 2015/945483
[68]. Miglani, R. (2013). Analysis of FSO communication links for mid and far infrared wavelengths. International Journal of Scientific &Engineering Research, 4(7).
[69]. Mitchell, J. E. (2009). Radio-over-fiber (RoF) networks. In Broadband Access Networks (pp. 283-300). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-92131-0
[70]. Nadeem, F., Kvicera, V., Awan, M. S., Leitgeb, E., Muhammad, S. S., & Kandus, G. (2009). Weather effects on hybrid FSO/RF communication link. IEEE Journal on Selected Areas in Communications, 27(9), 1687-1697. https://doi.org/10.1109/JSAC.2009.091218
[71]. Nadeem, L., Qazi, M. S., & Hassam, A. (2018). Performance of FSO links using CSRZ, RZ, and NRZ and effects of atmospheric turbulence. Journal of Optical Communications, 39(2), 191-197. https://doi.org/10. 1515/joc-2016-0113
[72]. Neha, & Kumar, S. S. (2016). Free Space Optical Communication: A Review. In 3rd International Conference on Recent Innovation in Science, Technology and Management (ICRISTM-16) (pp 79-83).
[73]. Nitesh, G., Kumar, R. S. P., & Khan, M. A. J. (2015). Performance analysis of a free space optics link with variation in distance along with multiple transmitters/receivers. International Journal for Scientific Research and Development, 3(3), 254-258.
[74]. Noor, N. H. M., Naji, A. W., & Al-Khateeb, W. (2012). Performance analysis of a free space optics link with multiple transmitters/receivers. IIUM Engineering Journal, 13(1). https://doi.org/10.31436/iiumej.v13i1.271
[75]. Park, J., Lee, E., Chae, C. B., & Yoon, G. (2015). Impact of pointing errors on the performance of coherent free-space optical systems. IEEE Photonics Technology Letters, 28(2), 181-184. https://doi.org/10.1109/LPT. 2015.2489383
[76]. Pesek, J., Ijaz, M., Ghassemlooy, Z., Fiser, O., & Rajbhandari, S. (2012, September). Measuring the fog attenuation in an indoor free space optical laboratory chamber. In 2012, International Conference on Applied Electronics (pp. 203-206). IEEE.
[77]. Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. Journal of Lightwave Technology, 27(8), 967-973.
[78]. Prokes, A., & Skorpil, V. (2009, September). Estimation of free space optics systems availability based on meteorological visibility. In 2009 IEEE Latin-American Conference on Communications (pp. 1-4). IEEE. https:// doi.org/10.1109/LATINCOM.2009.5305266
[79]. Rao, G. S., & Alemayehu, H. (2016). Loss calculation in free space optical communications. International Journal of Engineering Research and Application, 6(6), 49-51.
[80]. Raut, P. W., & Badjate, S. L. (2013). Diversity techniques for wireless communication. International Journal of Advanced Research in Engineering and Technology (IJARET), 4(2), 144-160.
[81]. Roy, R., & Babu, J. S. (2015a). Performance analysis of multiple tx/rx free space optical system under atmospheric disturbances. International Journal Of Engineering Research & Technology, 4(1), 445-447.
[82]. Roy, R., & Babu, J. S. (2015b). Simulation and performance analysis of free space optical systems using multiple TX/RX and polarized CO-OFDM techniques under atmospheric disturbances. International Journal of Engineering Research and General Science, 3(1), 743- 749.
[83]. Sadiku, M. N., Musa, S. M., & Nelatury, S. R. (2016). Free space optical communications: An overview. European Scientific Journal, 12(9), 55-68. https://doi. org/10.19044/esj.2016.v12n9p55
[84]. Sawhil, Agarwal, S., Singhal, Y., & Bhardwaj, P. (2018). An overview of free space optical communication. International Journal of Engineering Trends and Technology (IJETT), 55(3), 120-125. https://doi.org/10.14445/22315381/IJETT-V55P223
[85]. Sharma, A., Sharma, S., Singh, I., & Bhattacharya, S. (2017). Simulation and analysis of dispersion compensation using proposed hybrid model at 100 Gbps over 120Km using SMF. International Journal of Mechanical Engineering and Technology (IJMET), 8(12), 600-607.
[86]. Sharma, V. (2014). High speed CO-OFDM-FSO transmission system. Optik, 125(6), 1761-1763. https://doi. org/10.1016/j.ijleo.2013.10.010
[87]. Sharma, V., & Kaur, G. (2012). Degradation measures in free space optical communication (FSO) and its mitigation techniques–A review. International Journal of Computer Applications, 55(1), 23-27.
[88]. Sharma, V., & Kaur, G. (2013). High speed, long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Optik, 124(23), 6111-6114. https://doi.org/ 10.1016/j.ijleo.2013.04.100
[89]. Shieh, W., Bao, H., & Tang, Y. (2008). Coherent optical OFDM: Theory and design. Optics express, 16(2), 841-859. https://doi.org/10.1364/OE.16.000841
[90]. Singh, J., & Kapoor, V. (2011). Design and analysis of high speed free space optical communication link with different parameter. International Journal of Computer Applications on Communication and Networks, (1)24-27.
[91]. Singh, N. S., & Singh, G. (2013). Performance evaluation of log-normal and negative exponential channel modeling using various modulation techniques in OFDM-FSO communication. International Journal of Computers & Technology, 4(2), 639-647.
[92]. Singh, R., Sharma, N. K., & Beni, B. (2016). Simulation and performance analysis of free space optical system using bessel filter under different atmospheric disturbances. International Journal of Engineering Trends and Technology (IJETT), 38(1).
[93]. Son, I. K., & Mao, S. (2017). A survey of free space optical networks. Digital communications and networks, 3(2), 67-77. https://doi.org/10.1016/j.dcan.2016.11.002
[94]. Vanderka, A., Hajek, L., Bednarek, L., Latal, J., Vitasek, J., Hejduk, S., & Vasinek, V. (2016, September). Testing FSO WDM communication system in simulation software optiwave opti system in different atmospheric environments. In Laser Communication and Propagation through the Atmosphere and Oceans V, (Vol. 9979, pp. 1- 9). International Society for Optics and Photonics. https:// doi.org/10.1117/12.2237903
[95]. Vavoulas, A., Sandalidis, H. G., & Varoutas, D. (2012). Weather effects on FSO network connectivity. IEEE/OSA Journal of Optical Communications and Networking, 4(10), 734-740. https://doi.org/10.1364/ JOCN.4.000734
[96]. Wahab, F. A., Leong, T. K., Zulkifli, H., Ibrahim, M. I., Talib, M. A., Zamri, N. A., & Ibrahim, O. K. (2016). Multiple transmitters & receivers for free space optical communication link performance analysis. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(5), 29-32.
[97]. Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., Aggoune, H. M., Haas, H., Fletcher, S. & Hepsaydir, E. (2014a). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122-130. https://doi.org/10.1109/MCOM.2014.6736752
[98]. Wang, N., Song, X., Cheng, J., & Leung, V. C. (2014b, December). Secret key agreement for freespace optical communications over strong turbulence channels. In 2014 IEEE Global Communications Conference (pp. 2078-2083). IEEE. https://doi.org/10. 1109/GLOCOM. 2014.7037114
[99]. Wang, Z., Zhong, W. D., Fu, S., & Lin, C. (2009). Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photonics Journal, 1(6), 277-285. https://doi.org/10.1109/JPHOT. 2009.2039015
[100]. Xie, G., Dang, A., & Guo, H. (2011, June). Effects of atmosphere dominated phase fluctuation and intensity scintillation to DPSK system. In 2011 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE. https://doi.org/10.1109/icc.2011.5962740
[101]. Yao, S., Fu, S., Wang, H., Tang, M., Shum, P., & Liu, D. (2014). Performance comparison for NRZ, RZ, and CSRZ modulation formats in RS-DBS Nyquist WDM system. IEEE/OSA Journal of Optical Communications and Networking, 6(4), 355-361. https://doi.org/10.1364/ JOCN.6.000355
[102]. Yeaseen, M. H., Azam, F., Saha, S., & Islam, A. K. M. (2015, December). Free-space optical communication with BPSK subcarrier intensity modulation in presence of th atmospheric turbulence and pointing error. In 2015, 18 International Conference on Computer and Information Technology (ICCIT) (pp. 516-521). IEEE. https://doi.org/10. 1109/ICCITechn.2015.7488125
[103]. Yi, X., Fontaine, N. K., Scott, R. P., & Yoo, S. B. (2010). Tb/s coherent optical OFDM systems enabled by optical frequency combs. Journal of Lightwave Technology, 28(14), 2054-2061. https://doi.org/10.1109/JLT.2010. 2053348
[104]. You, R., & Kahn, J. M. (2002). Upper-bounding the capacity of optical IM/DD channels with multiple-subcarrier modulation and fixed bias using trigonometric moment space method. IEEE Transactions on Information Theory, 48(2), 514-523. https://doi.org/10.1109/18. 979327
[105]. Zarganis, K. E., & Hatziefremidis, A. (2015). Performance analysis of coherent optical OFDM applied to UAV mobile FSO systems. American Journal of Optics and Photonics, 3(1), 5-12. https://doi.org/10.11648/j.ajop. 20150301.12
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.