Comparison of Single Loop and Cascade Loop Control of BLDC Motor Drive

Manoj Kumar Merugumalla*
Department of Electrical and Electronics Engineering, Tirumala Engineering College, Jonnalagadda, Andhra Pradesh, India.
Periodicity:January - March'2020
DOI : https://doi.org/10.26634/jee.13.3.16858

Abstract

This paper is aimed at the speed control of a Brushless Direct Current (BLDC) motor drive, for which a single loop control and cascade system of control is established and the performance of the drive system is compared. Initially, the drive system is modeled in a single loop using transfer function model. Then it is modeled with cascaded loops. Both the models are simulated using MATLAB/SIMULINK. Magnitude optimum multiple integration tuning method has been introduced for BLDC motor drive system to tune PID controller parameters. By performing various simulation tests with and without disturbances at supply side, load side and under set-point changes, the simulation results show that the cascade control system has better performance than single loop control no matter where the disturbances enter and sudden changes occur at the reference speed of the drive system.

Keywords

Brushless Direct Current Motor, Particle Swarm Optimization, Bat Algorithm, Position, Velocity, PID Controller, Objective Function.

How to Cite this Article?

Merugumalla, M. K. (2020). Comparison of Single Loop and Cascade Loop Control of BLDC Motor Drive, i-manager's Journal on Electrical Engineering, 13(3), 38-45. https://doi.org/10.26634/jee.13.3.16858

References

[1]. Åström, K. J., Hang, C. C., Persson, P., & Ho, W. K. (1992). Towards intelligent PID control. Automatica, 28(1), 1-9. https://doi.org/10.1016/0005-1098(92)90002-W
[2]. Baszynski, M., & Pirog, S. (2013). A novel speed measurement method for a high-speed BLDC motor based on the signals from the rotor position sensor. IEEE Transactions on Industrial Informatics, 10(1), 84-91. https://doi.org/10.1109/TII.2013.2243740
[3]. Cui, C., Liu, G., Wang, K., & Song, X. (2014). Sensorless drive for high-speed brushless DC motor based on the virtual neutral voltage. IEEE Transactions on Power Electronics, 30(6), 3275-3285. https://doi.org/10.1109/ TPEL.2014.2337292
[4]. Er, P. V., Cao, R., Liang, W., Yang, R., Teo, C. S., & Tan, K. K. (2014). Selective approach towards robust control and accommodation of disturbances. International Journal of Mechatronics and Automation, 4(3), 161-172. https:// doi.org/10.1504/IJMA.2014.064097
[5]. Eti, S. L., & Kumar, N. P. (2014). Closed loop speed control of a BLDC motor drive using adaptive fuzzy tuned PI controller. International Journal of Engineering Research and Applications, 4(11), 93-104.
[6]. Ji, H., & Li, Z. (2009). Modelling and simulation of control system for brushless DC motor. International Journal of Modelling, Identification and Control, 7(4), 346-350. https://doi.org/10.1504/IJMIC.2009.027887
[7]. Kaliappan, E. (2015). Modelling, analysis and simulation of permanent magnet brushless DC motors for sensorless operation. International Journal of Power and Energy Conversion, 6(3), 234-251. https://doi.org/ 10.1504/IJPEC.2015.070466
[8]. Kim, T. H., & Ehsani, M. (2004). Sensorless control of the BLDC motors from near-zero to high speeds. IEEE Transactions on Power Electronics, 19(6), 1635- 1645.https://doi.org/10.1109/TPEL.2004.836625
[9]. Merugumalla, M. K., & Kumar, N. P. (2017). Optimized PID controller for BLDC motor using Nature-inspired Algorithms. International Journal of Applied Engineering Research, 12(1), 415-422.
[10]. Merugumalla, M. K., & Kumar, N. P. (2018). FFA-based speed control of BLDC motor drive. International Journal of Intelligent Engineering Informatics, 6(3-4), 325-342. https:// doi.org/10.1504/IJIEI.2018.091877
[11]. Merugumalla, M. K., & Navuri, P. K. (2016). Sensorless control of BLDC motor using bio-inspired optimization algorithm and classical methods of tuning PID controller. i- Manager's Journal on Instrumentation & Control Engineering, 5(1), 16-23. https://doi.org/10.26634/jic.5.1. 10349
[12]. Merugumalla, M. K., & Navuri, P. K. (2019). Chaotic inertia weight and constriction factor-based PSO algorithm for BLDC motor drive control. International Journal of Process Systems Engineering, 5(1), 30-52. https://doi.org/ 10.1504/IJPSE.2019.096673
[13]. Nikranjbar, A. (2014). Adaptive PID controller design guidelines for a class of non-linear systems. International Journal of Engineering Systems Modelling and Simulation, 6(1-2), 12-22. https://doi.org/10.1504/IJESMS.2014.058419
[14]. Papadopoulos, K. G. (2015). PID Controller Tuning using the Magnitude Optimum Criterion. Heidelberg: Springer International Publishing.
[15]. Stirban, A., Boldea, I., & Andreescu, G. D. (2012). Motion-sensorless control of BLDC-PM motor with offline FEM-information-assisted position and speed observer. IEEE Transactions on Industry Applications, 48(6), 1950-1958. https://doi.org/10.1109/TIA.2012.2226194
[16]. Taeib, A., & Chaari, A. (2015). Tuning optimal PID controller. International Journal of Modelling, Identification and Control, 23(2), 140-147. https://doi.org/10.1504/IJMIC. 2015.068872
[17]. Vrančić, D., Juričić, D., Strmčnik, S., & Hanus, R. (1999a). Closed-loop tuning of PID controller using MOMI method. Proceedings of the 1999 American Control Conference (pp. 3352-3356). https://doi.org/10.1109/ ACC.1999.782386
[18]. Vrančić, D., Peng, Y., & Strmčnik, S. (1999b). A new PID controller tuning method based on multiple integrations. Control Engineering Practice, 7(5), 623-633. https:// doi.org/10.1016/S0967-0661(98)00198-1
[19]. Vrančić, D., Strmčnik, S., & Juričić, D. (2001). A magnitude optimum multiple integration tuning method for filtered PID controller. Automatica, 37(9), 1473-1479. https://doi.org/10.1016/S0005-1098(01)00088-7
[20]. Vrančić, D., Strmčnik, S., Kocijan, J., & de Moura Oliveira, P. B. (2010). Improving disturbance rejection of PID controllers by means of the magnitude optimum method. ISA Transactions, 49(1), 47-56. https://doi.org/10.1016 /j.isatra.2009.08.002
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.