Comparison of Properties of Tin Oxide Thin Films Prepared from Different Tin Precursors

K. V. Murali*, T. L. Remadevi**
* Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala, India.
Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala, India.
Periodicity:April - June'2020


Polycrystalline nanostructured SnO thin films were synthesized using two precursors of tin at 353 K on glass substrates by 2 successive ionic layer adsorption and reaction (SILAR) technique. The annealing effect of the films has been investigated. Off-white colored porous films exhibited a different morphology with grain sizes in 4-8 nm range. The effect of crystallite-size and strain induced broadening of the XRD profile films have been studied using Williamson and Hall technique (W-H plot). Lattice parameters such as c/a ratio, cell volume, texture coefficient, microstrain and dislocation density were determined. Films show more than 55% transmittance and <20% reflectance in the entire Vis-NIR regions. Band gap of the as-grown films were blue-shifted. Refractive index, extinction coefficient and the porosity were deducted from the optical data. The electrical resistivity of the film lies in the range of 101-103 cm. Annealing enhanced the characteristic properties of the films except the reduction in the optical band gap.


Annealing, Dislocation Density, Lattice Parameters, Refractive Index, Electrical Resistivity.

How to Cite this Article?

Murali, K. V., and Remadevi, T. L. (2020). Comparison of Properties of Tin Oxide Thin Films Prepared from Different Tin Precursors. i-manager's Journal on Material Science, 8(1), 26-38.


[1]. Acosta, D. R., Zironi, E. P., Montoya, E., & Estrada, W. (1996). About the structural, optical and electrical properties of SnO2 films produced by spray pyrolysis from solutions with low and high contents of fluorine. Thin Solid Films, 288(1-2), 1-7. 6090(96)08815-3
[2]. Chen, F., & Liu, M. (1999). Preparation of mesoporous tin oxide for electrochemical applications. Chemical Communications, 18, 1829-1830. 10.1039/A904142G
[3]. Chen, Z. W., Lai, J. K. L., & Shek, C. H. (2005). Highresolution transmission electron microscopy investigation of nanostructures in SnO2 thin films prepared by pulsed laser deposition. Journal of Solid State Chemistry, 178(3), 892- 896.
[4]. Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray diffraction (3rd ed.). Upper saddle river: Prentice Hall.
[5]. Czapla, A., Kusior, E., & Bucko, M. (1989). Optical properties of non-stoichiometric tin oxide films obtained by reactive sputtering. Thin Solid Films, 182(1-2), 15-22.
[6]. Das, D., & Banerjee, R. (1987). Properties of electronbeam- evaporated tin oxide films. Thin Solid Films, 147(3), 321-331.
[7]. Elangovan, E., & Ramamur thi, K. (2003). Optoelectronic properties of spray deposited SnO2 : F thin films for window materials in solar cells. Journal of Optoelectronics and Advanced Materials, 5(1), 45-54.
[8]. Farber, Y., Khonsari-Arefi, F., & Amouroux, J. (1994). Thin film deposition of conductive tin oxide from tetramethyltin in a low pressure glow discharge diode reactor. Thin Solid Films, 241(1-2), 282-286.
[9]. Fell, C. R., Chi, M., Meng, Y. S., & Jones, J. L. (2012). In situ X-ray diffraction study of the lithium excess layered oxide compound Li [LiO. 2NiO. 2MnO. 6] O2 during electrochemical cycling. Solid State Ionics, 207, 44-49.
[10]. Godbole, V. P., Vispute, R. D., Chaudhari, S. M., Kanetkar, S. M., & Ogale, S. B. (1990). Dependence of the properties of laser deposited tin oxide films on process variables. Journal of Materials Research, 5(2), 372-377.
[11]. Göde, F. (2011). Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films. Physica B: Condensed Matter, 406(9), 1653-1659.
[12]. Hamdi, A. H., Laugal, R. C. O., Catalan, A. B., Micheli, A. L., & Schubring, N. W. (1991). Doping, patterning and analysis of tin oxide films using ion beams. Thin Solid Films, 198(1-2), 9-15. 90319-S
[13]. Hankare, P. P., Bhuse, V. M., Garadkar, K. M., Delekar, S. D., & Mulla, I. S. (2003). Chemical deposition of cubic CdSe and HgSe thin films and their characterization. Semiconductor Science and Technology, 19(1), 70-75.
[14]. Hodes, G., Albu-Yaron, A., Decker, F., & Motisuke, P. (1987). Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Physical Review B, 36(8), 4215-4221.
[15]. Homma, H., Kentjana, M., Alp, E. E., Mooney, T. M., Witthoff, E., & Toellner, T. (1992). SnO2 grazing incident antireflection films for monochromatization of synchrotron radiation: Design, preparation, and characterization. Journal of Applied Physics, 72(12), 5668-5675. 1063/1.351916
[16]. Karen, P., & Woodward, P. M. (1998). Liquid-mix disorder in crystalline solids: ScMnO3 . Journal of Solid State Chemistry, 141(1), 78-88.
[17]. Kılıç, Ç., & Zunger, A. (2002). Origins of coexistence of conductivity and transparency in SnO2 . Physical Review Letters, 88(9). 095501
[18]. Korotcenkov, G., Macsanov, V., Tolstoy, V., Brinzari, V., Schwank, J., & Faglia, G. (2003). Structural and gas response characterization of nano-size SnO2 films deposited by SILD method. Sensors and Actuators B: Chemical, 96(3), 602-609. 2003.07.002
[19]. Kril, C. E., & Birringer, R. (1998). Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philosophical Magazine A, 77(3), 621-640. 8224072
[20]. Langford, J. I., Louër, D., Sonneveld, E. J., & Visser, J. W. (1986). Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffraction, 1(3), 211-221. 5600011738
[21]. Larena, A., Millán, F., Pérez, G., & Pinto, G. (2002). Effect of surface roughness on the optical properties of multilayer polymer films. Applied Surface Science, 187(3- 4), 339-346. 01044-3
[22]. Lee, J. M., Kim, K. K., Park, S. J., & Choi, W. K. (2001). Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO. Applied Physics Letters, 78(24), 3842-3844.
[23]. Melsheimer, J., & Ziegler, D. (1985). Band Gap Energy and Urbach Tail Studies of Amorphous, Partially Crystalline and Polycrystalline Tin Dioxide. Thin Solid Films, 129, 35-47.
[24]. Mittemeijer, E. J., & Scardi, P. (Eds.). (2013). Diffraction analysis of the microstructure of materials (Vol. 68). Springer Series in Material Science.
[25]. Murali, K. V., Ragina, A. J., Preetha, K. C., Deepa, K., & Remadevi, T. L. (2013). Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique. Materials Research Bulletin, 48(9), 3009-3016. 1016/j.materresbull.2013.04.059
[26]. Nair, P. K., Nair, M. T. S., & Campos, J. (1993). Photoconductive SnO2 thin films from thermal decomposition of chemically deposited SnS thin films. Journal of the Electrochemical Society, 140(2), 539-541.
[27]. Orton, J. W., Goldsmith, B. J., Chapman, J. A., & Powell, M. J. (1982). The mechanism of photoconductivity in polycrystalline cadmium sulphide layers. Journal of Applied Physics, 53(3), 1602-1614. 1.330618
[28]. Pan, S. S., Ye, C., Teng, X. M., Fan, H. T., & Li, G. H. (2006). Preparation and characterization of nitrogenincorporated SnO2 films. Applied Physics A, 85(1), 21-24.
[29]. Phillips, H. M., Li, Y., Bi, Z., & Zhang, B. (1996). Reactive pulsed laser deposition and laser induced crystallization of SnO2 transparent conducting thin films. Applied Physics A, 63(4), 347-351.
[30]. Rakhshani, A. E., Makdisi, Y., & Ramazaniyan, H. A. (1998). Electronic and optical properties of fluorine-doped tin oxide films. Journal of Applied Physics, 83(2), 1049-1057.
[31]. Rella, R., Serra, A., Siciliano, P., Vasanelli, L., De, G., Licciulli, A., & Quirini, A. (1997). Tin oxide-based gas sensors prepared by the sol–gel process. Sensors and Actuators B: Chemical, 44(1-3), 462-467. S0925-4005(97)00205-0
[32]. Ristov, M., Sinadinovski, G. J., Grozdanov, I., & Mitreski, M. (1987). Chemical deposition of ZnO films. Thin Solid Films, 149(1), 65-71. 6090(87)90249-5
[33]. Sahana, M. B., Sudakar, C., Dixit, A., Thakur, J. S., Naik, R., & Naik, V. M. (2012). Quantum confinement effects and band gap engineering of SnO2 nanocrystals in a MgO matrix. Acta Materialia. 60(3), 1072-1078. 10.1016/j.actamat.2011.11.012
[34]. Seto, J. Y. (1975). The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 46(12), 5247-5254.
[35]. Shakti, N., & Gupta, P. S. (2010). Structural and optical properties of sol-gel prepared ZnO thin film. Applied Physics Research, 2 (1), 19-28.
[36]. Sinha, E., & Rout, S. K. (2009). Influence of fibresurface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bulletin of Materials Science, 32(1), 65-76.
[37]. Snyder, R. L., Bish, D. L., & Post, J. E. (1989). Modern powder diffraction. Reviews in Mineralogy, 20, 101-144.
[38]. Supothina, S., & De Guire, M. R. (2000). Characterization of SnO2 thin films grown from aqueous solutions. Thin Solid Films, 371(1-2), 1-9. 10.1016/S0040-6090(00)00989-5
[39]. Tolstoy, V. P. (1997). The peroxide route of the successive ionic layer deposition procedure for synthesizing nanolayers of metal oxides, hydroxides and peroxides. Thin Solid Films, 307(1-2), 10-13. 10.1016/S0040-6090(97)00256-3
[40]. Varghese, O. K., Malhotra, L. K., & Sharma, G. L. (1999). High ethanol sensitivity in sol–gel derived SnO2 thin films. Sensors and Actuators B: Chemical, 55(2-3), 161-165.
[41]. Vinodkumar, R., Lethy, K. J., Arunkumar, P. R., Krishnan, R. R., Pillai, N. V., Pillai, V. M., & Philip, R. (2010). Effect of cadmium oxide incorporation on the microstructural and optical properties of pulsed laser deposited nanostructured zinc oxide thin films. Materials Chemistry and Physics, 121(3), 406-413. j.matchemphys.2010.01.004
[42]. Vispute, R. D., Godbole, V. P., Chaudhari, S. M., Kanetkar, S. M., & Ogale, S. B. (1988). Deposition of tin oxide films by pulsed laser evaporation. Journal of Materials Research, 3(6), 1180-1186. 10.1557/JMR.1988.1180
[43]. Wang, X. S., Wu, Z. C., Webb, J. F., & Liu, Z. G. (2003). Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics A, 77(3-4), 561-565. 1497-2
[44]. Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22-31.
[45]. Ying, Z., Wan, Q., Song, Z. T., & Feng, S. L. (2004). SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology, 15(11), 1682.
[46]. Yoldas, B. E., & Partlow, D. P. (1985). Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films, 129(1-2), 1-14.
[47]. Yu, K. N., Xiong, Y., Liu, Y., & Xiong, C. (1997). Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Physical Review B, 55(4), 2666- 2671.
[48]. Zhao, J., Huo, L. H., Gao, S., Zhao, H., & Zhao, J. G. (2006). Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating. Sensors and Actuators B: Chemical, 115(1), 460-464.
[49]. Zhu, B., Liu, C. M., Lv, M. B., Chen, X. R., Zhu, J., & Ji, G. F. (2011). Structures, phase transition, elastic properties of SnO2 from first-principles analysis. Physica B: Condensed Matter, 406(18), 3508-3513. 036
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.