o ≤ θ ≤  90o are plotted The purpose of this article is to give an overview of the technology and used beamforming techniques.

">

Adaptive Beamforming Algorithms Applicable for Mobile Communication

Pavan Mankal*, Sanjay C. Gowre**
*-** Department of Electronics and Communication Engineering, Bheemanna Khandre Institute of Technology, Bhalki, Karnataka, India.
Periodicity:September - November'2019
DOI : https://doi.org/10.26634/jele.10.1.15575

Abstract

A smart antenna system attracts a lot of attention now a days and believed to be more in the future. The smart antennas when used in communication system, enhances the system capacity, efficiency and bandwidth. From the past decade huge amount of research has been carried out in array signal processing to improve the communications systems. In this paper, most popular beamforming methods used in array signal processing are discussed in terms of its benefits and the reason for its popularity. Furthermore, various fixed weight beamforming and adaptive beamforming techniques are also discussed in this paper. A simulation of beamforming in a particular direction of interest with nulls in interfering o o directions is done using MATLAB simulation software. Array factor for the range between -90o ≤ θ ≤  90o are plotted The purpose of this article is to give an overview of the technology and used beamforming techniques.

Keywords

Adaptive Array, Beamforming, Switched Beam Systems, Mean Square Error.

How to Cite this Article?

Mankal, P., & Gowre, S. C. (2019). Adaptive Beamforming Algorithms Applicable for Mobile Communication. i-manager's Journal on Electronics Engineering, 10(1), 8-15. https://doi.org/10.26634/jele.10.1.15575

References

[1]. Aspalli, M. S., Veerendra, D., & Hunagund, P. V. (2011). A new generation VLSI approach for V/F control of threephase induction motor. In Proceedings of the International Conference on VLSI, Communication and Instrumentation, Kottayam, India.
[2]. Bakhar, M., & Hunagund, D. P. (2009). Eigen structure based direction of arrival estimation algorithms for smart antenna systems. International Journal of Computer Science and Network Security (IJCSNS), 9(11), 96-100.
[3]. Bakhar, M., Vani, R. M., & Hunagund, P. V. (2014, December). Implementation and optimization of modified MUSIC algorithm for high resolution DOA estimation. In 2014 IEEE International Microwave and RF Conference (IMaRC) (pp. 190-193). IEEE. https://doi.org/ 10.1109/IMaRC.2014.7038985
[4]. Bakhar, M., & Vani, R. M. (2016). Robust blind beam formers for smart antenna system using window techniques. Procedia Computer Science, 93, 713-720. https://doi.org/10.1016/j.procs.2016.07.274
[5]. Dakulagi, V., & Bakhar, M. (2017a). A novel LMS beamformer for adaptive antenna array. Procedia Computer Science, 115, 94-100. https://doi.org/10.1016/ j.procs.2017.09.081
[6]. Dakulagi, V., & Bakhar, M. (2017b). Efficient blind beamforming algorithms for phased array and MIMO RADAR. IETE Journal of Research, 64(2), 241-246. https://doi.org/10.1080/03772063.2017.1351319
[7]. Dakulagi. V. (2018). Compact multiband planar inverted L-patch antenna array for smart mobile phones. i-manager's Journal on Electronics Engineering, 8(3), 32- 35. https://doi.org/10.26634/jele.8.3.14415
[8]. Dakulagi, V., & Bakhar, M. (2019). Smart antenna system for DOA estimation using single snapshot. Wireless Personal Communications, 107(1), 81-93. https://doi.org/ 10.1007/s11277-019-06241-0
[9]. Dakulagi, V., Noubade, A., Agasgere, A., Doddi, P., & Fatima, K. (2019). Modified adaptive beamforming algorithms for 4G-LTE smart-phones. In Soft Computing and Signal Processing (pp. 561-568). Springer, Singapore. https://doi.org/10.1007/978-981-13-3393-4_57. oi.org/10.26634/jele.8.3.14415
[10]. Ghorbani, K., & Waterhouse, R. B. (2004). Dual polarized wide-band aperture stacked patch antennas. IEEE Transactions on Antennas and Propagation, 52(8), 2171-2175. https://doi.org/ 10.1109/TAP.2004.832484
[11]. Godara, L. C. (1997). Application of antenna arrays to mobile communications. II. Beam-forming and directionof- arrival considerations. In Proceedings of the IEEE, 85(8), 1195-1245. https://doi.org/10.1109/5.622504
[12]. Kwong, R. H., & Johnston, E. W. (1992). A variable step size LMS algorithm. In IEEE Transactions on Signal Processing, 40(7), 1633-1642. https://doi.org/10.1109/ 78.143435
[13]. Lopes, P. A. C., Tavares, G., & Gerald, J. B. (2007, April). A new type of normalized LMS algorithm based on the Kalman filter. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07 (Vol. 3, pp. III-1345). IEEE. https://doi.org/10.1109/ ICASSP.2007.367094
[14]. Rupp, M. (1993). The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Transactions on Signal Processing, 41(3), 1149-1160. https://doi.org/10.1109/78.205720
[15]. Slock, D. T. (1993). On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing, 41(9), 2811-2825. https://doi.org/10.1109/78.236504
[16]. Srar, J. A., Chung, K. S., & Mansour, A. (2010). Adaptive array beamforming using a combined LMS-LMS algorithm. IEEE Transactions on Antennas and Propagation, 58(11), 3545-3557. https://doi.org/ 10.1109/TAP.2010.2071361
[17]. Veerendra, D., & Bakhar, M. (2016). Smart antennas for next generation mobile communication. i-manager's Journal on Digital Signal Processing, 4(3), 6-11. https://doi.org/10.26634/jdp.4.3.8142
[18]. Veerendra, D., Bakhar, M., & Vani, R. M. (2016). Smart antennas for interference rejection in mobile communications. i-manager's Journal on Mobile Applications and Technologies, 2(4), 11-18. https://doi. org/10.26634/jmt.2.4.6047
[19]. Veerendra, D., Bakhar, M., & Vani, R. M. (2017). Smart antennas for spectrum sensing using cognitive radio networks. i-manager's Journal on Communication Engineering and Systems, 6(1), 32-37. https://doi.org/ 10.26634/jcs.6.1.10357
[20]. Wax, M., & Sheinvald, J. (1994). Direction finding of coherent signals via spatial smoothing for uniform circular arrays. IEEE Transactions on Antennas and Propagation, 42(5), 613-620. https://doi.org/10.1109/8.299559
[21]. Wong, K. L. (2002). Compact circularly polarized microstrip antennas. Compact and Broadband Microstrip Antennas (pp. 162-220). Wiley Online Library. https://doi.org/10.1002/0471221112.ch5
[22]. Yang, X. H., & Shafai, L. (1994, June). Multi frequency operation technique for aperture coupled microstrip antennas. In Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting (Vol. 2, pp. 1198-1201). IEEE. https://doi.org/10.1109/APS.1994.407875
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.