JSE_V10_N4_SP1
Mining Fuzzy Association Rules Using Various Algorithms: A Survey
O. Gireesha
O. Obulesu
Journal on Software Engineering
2230–7168
10
4
30
36
Association Rules, Data Mining, Fuzzy Sets, Membership Functions
The discovery of Association Rules (AR) acquire an imperative rule in Data Mining, which tries to find correlation among the attributes in a database. Classical Association Rules are meant for Boolean data and they suffer from a sharp boundary problem in handling quantitative data. Thereby, Fuzzy Association Rules (FAR) with fuzzy minimum support and confidence is introduced. In Fuzzy Association Rule Mining (FARM), determining fuzzy sets, tuning membership functions and automatic design of fuzzy sets are prominent objectives. Hence, FARM can be viewed as a multi-objective optimization problem. In this paper, different algorithms for FARM are discussed with merits and demerits.
April - June 2016
Copyright © 2016 i-manager publications. All rights reserved.
i-manager Publications
http://www.imanagerpublications.com/Article.aspx?ArticleId=6059