
34

Stability Model (SSM) [1], which generates architectures

capable of evolving through time without the concern of

potential collapses. These evolving architectures are

referred as Timeless architectures. Timeless architectures

are well-designed architectures, whose structures remain

constant, and are able to evolve proportionally with the

appearance of new requirements over time for a long

time [2]. In other words, they are flexible enough to scale

the scope of their elements, methods, etc. when handling

more demanding requirements. For instance, gluing

together two or more architectures that were used

separately to perform one or more common tasks

(Horizontal Scalability), or adding new functionalities to

architecture's structure to address more users needs

(Vertical Scalability). These benefits will turn the

architecture not only into a more stable and reusable

architecture, but also into a more scalable one. Timeless

and scalable architectures must survive with minimum

changes over time as much as possible, and evolve

accordingly to new requirements and business goals in a

flexible and elastic manner. Featuring this kind of

architectures will be discussed more in the upcoming

columns.

Scalable Architectures with Traditional Design

Approaches

At its essence, a traditional approach is incapable of

providing all the solutions for developing Timeless and

Scalable architectures. A major difficulty of this approach

lies in the factors, such as uncertainty or lack of knowledge

on which steps or guidelines to use, in order to obtain a

good modularization of the Architecture. For instance,

when dealing with Vertical Scalability is not clear what

elements or layers to keep and what to drop to reach an

efficient result [3]. From the Horizontal Scalability

perspective, traditional model approach does not

facilitate a specific idea on which points a particular

architecture would be bound with/unbound from other

external and heterogeneous architectures. In this way, the

THE CURRENT STATE OF SCALABILITY: WHAT IS AND WHAT SHOULD BE

MOHAMED E. FAYAD *, SHIVANSHU K. SINGH **, RAFAEL CAPILLA ***

Traditional approaches of architecting software are

incapable of providing all the solutions for developing

scalable architectures. Uncertainty or lack of knowledge

about which steps or guidelines to use, in order to obtain

a good modularization of the architecture, is one of the

major problems that keeps us from realizing a truly

scalable architecture.

INTRODUCTION

The previous column in this series on scalability, discussed

the current state of Scalability in Software Architecture. It

discussed the problems with the way software is

architected today and introduced a new way of looking

at scalability, i.e. from the view of the Software Stability

Model [1]. Here, the authors take a look at how the current

approach to architecting software is not the best way to

ensure scalability from architecture and requirements

engineering perspective. The current approaches to the

software architecture introduce way to many

dependencies into the system (e.g. tight coupling and

high cohesion, no proper identification of layers of

functionalities or lack of adequate modularization), such

that managing requirements over time becomes a big

hassle and a tedious task, when it comes to

adding/removing functionality.

Regardless of effectiveness, there are cases where

Scalability may be implemented using a conventional

approach, as described in the previous column.

However, these cases may not provide the most suitable

implementation for scalability. Therefore, the resulted

architecture would be struggling in reaching a high level

of consistency, becoming a perfect facilitator of a series

of drawbacks through time. Such pitfalls encourage the

utilization of an innovative approach, the Software

*
College of Engineering, San Jose State University, San Jose

**

 Department of Computer Engineering, Charles W. Davidson
, USA.

Software/Data Engineering and DevOps, Athos, San Francisco,
California, USA.

*** Associate Professor at the University Rey Juan Carlos of Madrid
(Spain), USA.

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

TECHNICAL COLUMN

well-designed reference architectures with enough

flexibility capable to integrate new functional pieces

without much effort can be considered as suitable

candidates to achieve horizontal stability. These factors

will incapacitate the ideal architecture not only on its

deployment but also in its capacity to adapt to multiple

environments (Constrained and Unconstrained).

Additionally, these factors will turn the resulted

architecture into an excellent host for serious

contamination problems when scaling it vertically and/or

horizontally. Since this occurrence becomes more

prominent through the entire architecture, the harmful

result of the corresponding ripple effects [4] would get

magnified. To see how the ripple effects are propagated

throughout the entire architecture, refer to Figure 1.

There are further difficulties experienced when using a

traditional approach. They are listed using a detailed

“Cause and Effect” table. The purpose of this table is to

detail the effects of the usage of a conventional

approach over the implementation and deployment of

Timeless and Scalable Architectures. The authors would

concentrate not only in the characteristics of this

approach, and how it deals with Scalability, but also in

showing the effects in implementation process and in the

resulted architecture itself. Described below are the

various problems that exist with the current approaches to

designing a software architecture, following traditional

approaches to software development, along with their

effects on horizontal and vertical scalability with respect

to the software's architecture.

Problems/Causes and Effects of using Traditional

Approaches to develop Timeless & Scalable

Architectures

Cause 1. Unavailability of well defined guidelines to factor

scalabil ity into any software architecture and

unsystematic processes.

Effects:

Vertical Scalability:

High impact on implementation, impossible test cases

and a high chance of stability and scalability problems to

occur with respect to the architecture may lead to

·

architecture collapse.

Horizontal Scalability:

Same as the impacts on Vertical Scalability; High impact

on implementation, impossible test cases and a High

chance of stability and scalability problems to occur with

respect to architecture, includes a high chance of

architecture collapse.

Rationale of Effects: The lack of adequate guidelines to

achieve a concrete level of stability in any architecture

may block the architecting process and the assumptions

made and lead to a proper design. Hence, bad design

decisions may cause an unstable design.

Cause 2. Unclear Direction of Scalability and Ad-Hoc

Processes.

Effects:

Vertical Scalability:

High impact on implementation, Low Cohesion and an

Unstable Structure and a High chance of stability and

scalability problems to occur with respect to architecture,

includes a high chance of embedded containment.

Horizontal Scalability:

High impact on implementation, Low Cohesion and an

Unstable Structure and a High chance of stability and

scalability problems to occur with respect to architecture,

includes a high chance of embedded containment.

Rationale of Effects: Wrong or inadequate design

decisions to achieve a more scalable design may

damage the structure of the architecture, to provoke

mismatches and inconsistency problems.

Cause 3. No clear way of 'Layer' Identification.

Effects:

Vertical Scalability:

High impact on implementation, not cost / time effective

and a High chance of stability and scalability problems to

occur with respect to architecture, including a high

chance of ripple effects.

Horizontal Scalability:

High impact on implementation, not cost / time effective

and a High chance of stability and scalability problems to

·

·

·

·

·

35i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

TECHNICAL COLUMN

occur with respect to architecture, including a high

chance of ripple effects.

Rationale of Effects: A bad identification of the layers that

would be added or removed in the architecture may

boost the ripple effects in the design of bad decisions.

Cause 4. Shortage of Layer Boundaries.

Effects:

Vertical Scalability:

High impact on implementation and a Medium-High

effort required during implementation, with medium-high

degree of difficulties associated with scaling up. Unclear

borders between layers make more difficult to assign

architectural modules to a given layer.

Horizontal Scalability

n/a

Rationale of Effects: The difficulty to clearly identify the

boundaries of architecture layers and assign each

architectural component to the right layer leads to

unclear borders, where the architect has difficulties when

assigning functionality to a given layer.

Cause 5. Undefined Connection/Interfacing points

between Layers.

Effects:

Vertical Scalability:

High impact on implementation and a High effort

required during implementation, with high degree of

difficulties in scaling down.

Horizontal Scalability:

n/a

Rationale of Effects: Wrong definition of architectural

interfaces makes the design less scalable and

complicates the programming issues.

Cause 6. Problems in Scaling out, as again no clear

architectural interfaces defined.

Effects:

Vertical Scalability:

n/a

Horizontal Scalability:

High impact on implementation and a Medium-High

·

·

·

·

·

·

effort required during implementation, with medium-high

degree of difficulties in scaling out.

Cause 7. Problems in Scaling in, as no proper guidelines

are there to reduce or remove any architecture from the

existing system.

Effects:

Vertical Scalability:

n/a

Horizontal Scalability:

High impact on implementation and a High effort

required during implementation, with high degree of

difficulties in scaling in.

In order to come up with a formal way of evaluating and

considering scalability requirements for any software,

attempts have been made in the past [5]. These methods

involve frameworks that let you evaluate the scalability

requirements, decide the various conflicts and priorities

and help in coming up with the necessary set of

guidelines to incorporate the required scalability into the

system. However, it should be noted that, these

approaches are still approaching the issue of scalability

at the deployment and configuration level than doing so

when coming up with the core architecture. Also, the term

architecture as taken by these approaches [5] refer more

to the way the various component s of the software system

are deployed and configured than anything else. While

these approaches might be helpful and would surely

come into play when a system has to be actually

deployed, they do not address the concern of scalability

in a holistic way and so scaling with the changing

functional requirements is just not possible if those

approaches are to be followed in an isolated way.

The consequences of traditional approaches to software

architecture and how they affect scalability can be seen

in a simplified way using Figures 1 and 2.

These illustrations describe in a very simple way the ripple

effects experienced by the developed architecture using

the Traditional approach. Adopting this approach will

require a constant involvement from developers trying to

safeguard the archi tecture f rom col laps ing.

Unfortunately, these traditional approaches do not

·

·

36 i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

TECHNICAL COLUMN

provide any help to the latter case. They do not offer the

right tools or processes to accomplish Scalability when

addressing large changes in problem size [3].

Additionally, due to its lack of flexibility, traditional

approaches are unable to handle the diversity of

employed methods encountered within Scalability's

implementation when incurring in different problem

domains [3].

These fallouts strongly enforce the necessity of an

approach which can provides good mechanisms for

implementing a Timeless & Scalable Architecture, such as

partitioning, composition, and visibility control [3]. In the

searching of accomplishing such mechanisms, some

essential questions should be answered: How are we

going to design a stable architecture, in such way, that the

increasing loads or demands will be manageable over

time? How can we assure that the software system will

operate at the same capacity in a more constrained

environment? What are the elements or blocks necessary

to reach a grade of stability in our architecture design?

How do we ensure the necessary (high – as high as

possible) degree of modularization to achieve effective

scalability in all directions?

SSM is an answer to this problem. Concepts such as EBTs

and BOs [1, 2], when used in architecting software, help in

goal realization in the sense that we have a clear

distinction between the sets of functionality. The concept

of Knowledge Maps, working in conjunction with the SSM

37

Figure 1. Vertical Scalability Ripple Effects

(a) Upward

(b) Downward

(a) Extensibility

Figure 2. Ripple Effects of Horizontal
Scalability in Traditional Systems

(b) Reduction

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

TECHNICAL COLUMN

concepts, provides the necessary modularity that helps

us in realizing a truly scalable system [6]; scalable with the

changing functional and non-functional requirements of

the system.

Conclusion

The traditional approaches to scalability in software do

not address the essential need to provision this ability in

the very core, the architecture of the software. There have

been multiple attempts in which, formal ways of

approaching and evaluating software scalability have

been proposed [5] but these approaches miss out the

fact that the issue of scalability is to be addressed at the

architecture of the software and not only at the

deployment of it. Requirements change over time and so

the architecture should be able to evolve with those

changes without causing contamination and faults. The

objective of this column is to provide an answer for those

essential questions. The proposed solution is based on the

idea that if a software architecture is designed properly,

reaching certain grade of stability, it can be then scaled

according to future requirements without the danger of

collapsing or redesigning the entire architecture from

scratch. Therefore, knowing if this architecture reaches a

desired stability level is a major question software

architects may raise. Software stability concepts and

approaches [1, 3, 6, 7] would be introduced as the main

facilitator for this goal implementation.

References

[1]. M.E Fayad, (2002). “Accomplishing Software

Stability”. Communications of the ACM, Vol.45, No.1.

[2]. M.E. Fayad, H.S. Hamza, and H. A. Sanchez, (2004).

“Towards Scalable Software Architectures”. IEEE

International Conference on Information Reuse and

Integration, Las Vegas, NV.

[3]. Mauri Laitinen, M.E. Fayad, and Robert P. Ward,

(2002). “The Problem with Scalability”. Communications

of the ACM, Vol.43, No.9.

[4]. N.H. Madhavji, J. Fernández-Ramil, and D. Perry,

(2006). Software Evolution and Feedback: Theory and

Practice. John Wiley & Sons.

[5]. Duboc L., Rosenblum D., and Wicks T., (2007). “A

framework for characterization and analysis of software
thsystems scalability”. in Proceeding of the 6 Joint Meeting

of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, ESEC/FSE '07, pp.375-384.

[6]. M. E. Fayad, H. A. Sanchez and Shivanshu K. Singh,

(2010). “Knowledge Maps – Fundamentally Modular

Approach to Software Architecture, Design, Development
thand Deployment”. in Proceedings of the 19 International

Conference on Software Engineering and Data

Engineering, pp.127-133.

[7]. M.E. Fayad and S. Wu, (2002). “Merging Multiple

Conventional Models into One Stable Model”.

Communications of the ACM, Vol.45, No. 9.

38 i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

TECHNICAL COLUMN

39

ABOUT THE AUTHORS

Dr. Mohamed E. Fayad is a Full Professor of Computer Engineering at San Jose State University from 2002 to present. He is one of
the founders and president of Arab Computer Society (ACS) from April 04 to April 2007. Dr. Fayad is a known and well recognized
authority in the Domain of Theory and the Applications of Software Engineering. Fayad's publications are in the very core, archival
Journals and Conferences in the Software Engineering field. Dr. Fayad has published more than 218 high quality papers, that
includes more than 40 profound Reports in reputed Journals, and 90 advanced articles in refereed Conferences, more than 25
Journal Columns, 11 well-cited theme issues in prestigious Journals and flagship Magazines, 24 different Workshops in very
respected Conferences, over 125 tutorials, seminars, and short presentations in 20+ different counties, NASA Red Team Review
of QRAS and NSF-USA Research Delegations' Workshops to Argentina and Chili and eight authoritative books, of which three of
them are translated into different languages such as Chinese. Dr. Fayad received an MS and a Ph.D. in computer science from
the University of Minnesota at Minneapolis. He is the lead author of several classic Wiley and CRC books.

Shivanshu Singh is working at Software/Data Engineering and DevOps, Athos, San Francisco, California, USA. His research is
focused on the areas of Unified Software Engines, Software Architecture, Architectural and Stable Patterns, Knowledge Maps,
Spatiotemporal Databases, Software Engineering Processes, Requirements Engineering, Collaborative Systems and more.
Shivanshu received his Bachelor of Technology degree in Information and Communication Technology from Dhirubhai Ambani
Institute of Information and Communication Technology, Gandhinagar, India in 2007 and has years of professional experience in
software engineering, research and development and teaching. He is involved in the development of some major Journals in
the field of software engineering and multiple new business developments. He has multiple Journal, Conference and Column
publications in his name and is the Editor in Chief for the International Journal of Unified Software Engines (IJUSE). He is in the
process of writing one book on Unified Software Engines (USEs). Shivanshu is the Lead of Research of a team of about ten
graduate students at San Jose State University, researching on various topics in Software Engineering. He is also a member of IEEE,
IEEE Computer Society and the ACM, as well as an invited member of the Phi Kappa Phi Honor Society, for academic excellence;
Shivanshu is currently working towards his Master of Science degree in Software Engineering at San Jose State University, San Jose,
California and he is working on a PhD degree at Carnegie Mellon University, Doctor of Philosophy (Ph.D.), Software Engineering.

Dr. Rafael Capilla is an Associate Professor at the University Rey Juan Carlos of Madrid (Spain), USA. His research focuses on
Software Architectures and Architectural Design Decisions, Product Line Engineering and Software Variability, and Dynamic
Service Binding Among others. He co-authored over 79 publications in International Conferences, Journals and Book Chapters
and he regularly serves as reviewer. He participates in several Spanish and European research projects and currently is the Head
of the Software Architecture & Internet Technologies (SAIT) research group. Dr Capilla has been a visiting researcher in several
Spanish and European universities and research center and is a member of IEEE CS since 1998. He also chaired and co-chaired
International Conferences and Workshops and serves as an active PC member in several Software Conferences.

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

TECHNICAL COLUMN

	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45

