
20

INTRODUCTION

In the research area of software defect prediction, there

have been significant advances in Genetic Feature

Selection for Software Defect Prediction. The authors goal

is to develop the combination of genetic algorithm and

bagging technique for improving the performance of the

software defect prediction.

Feature selection is an important data preprocessing

activity and has been extensively studied in the data

mining and machine learning community. The main goal

of feature selection is to select a subset of features that

minimizes the prediction errors of classifiers.

Here, Genetic algorithm is applied to deal with the feature

selection, and bagging technique is employed to deal

with the class imbalance problem.

1. Objectives

The main objectives of this study are given below:

Genetic algorithm is applied for solving the problem

of faulty module prediction as well as finding the most

important attribute for fault occurrence.

The overall aim is to provide an efficient feature

selection for further development of the research.

·

·

·

·

·

·

A lot of research work has been carried out in the field

of genetic algorithm, and various researchers have

proposed many useful techniques for genetic

algorithm and feature selection.

Genetic Algorithm employs on the basis of the following

parameters:

Fitness function.

Time and space.

Fault coverage.

2. Literature Review

Genetic Algorithm is a problem solving algorithm. It uses

genetics as its model of problem solving. It is a search

technique to find approximate solutions to the

optimization and search problems. Genetic algorithm is

applied for solving the problem of faulty module

prediction and as well as for finding the most important

attribute for fault occurrence. This section surveys the

approaches of discourse annotation at the Genetic

Algorithm. A lot of research work has been carried out in

the field of genetic algorithm, and various researchers

have proposed several useful techniques for genetic

algorithm and feature selection.

A SURVEY OF GENETIC FEATURE SELECTION FOR
SOFTWARE DEFECT PREDICTION

By

ABSTRACT

Software defect prediction is an important research topic in the software engineering field, especially to solve the

inefficiency and ineffectiveness of the existing industrial approach of software testing and reviews. The software defect

prediction performance decreases significantly because the data set contains noisy attributes and class imbalance.

Feature selection is generally used in machine learning when the learning task involves high-dimensional and noisy attribute

datasets. In this survey, a Genetic Algorithm and a bagging technique is a research topic for Software Defect Prediction. The

survey of publications on this topic leads to the conclusion that the field of genetic algorithms applications is growing fast. The

authors overall aim is to provide an efficient feature selection for further development of the research.

Keywords: Software Defect Prediction, Genetic Algorithm, Feature Selection, Bagging Technique.

* Research Scholar, Department of Computer Science, Government Arts College, Nandanam, Chennai, India.
** Assistant Professor, Department of Computer Science, Government Arts College, Nandanam, Chennai, India.

R. REENA * R. THIRUMALAI SELVI **

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

21

ARTICLES

2.1 Nikita Kravtsov and Maxim Buzdalov (2014): Worst-

Case Execution Time Test Generation

This work presented an approach to Worst-Case Execution

Time (WCET) test generation. It is executed in two stages.

The first stage is to augment the source code of the tested

program with counters which store the number of

invocations of each method and loop. The second stage

is to run a single-objective genetic algorithm, where the

Fitness function is determined for each iteration by an

objective selection algorithm.

This approach is different from other existing approaches

in two aspects. First, it is more automated because it does

not require a human to insert the counters into the source

code. Second, two new objective selection algorithms,

which do not need parameter tuning, are proposed and

have shown better results. So they can be recommended

as a default option for an implementation of the

presented approach in a software tool for test generation

[3].

2.2 Aditi Puri and Harshpreet Singh (2014): Finding Faulty

Modules

AditiPuri and Harshpreet Singh developed a Genetic

Algorithm to find critical classes and metrics that are fault

prone. The Genetic Algorithm technique shows the high

value of Probability of Detection (PD) i.e. 0.875 and the low

value of Probability of False Alarms (PF) i.e. 0.44. The error

and accuracy values are calculated and recorded as

0.294 and 0.705 respectively. It is therefore concluded

that, the Genetic algorithm can be used for object-

oriented systems and is useful in predicting the fault prone

classes. The work can be extended by using other

evolutionary algorithms for finding the most important

attribute for fault prediction and finding the critical classes

and metrics [4].

2.3 Mitchell Melanie (1999): Genetic Algorithm

Introduction

This is an early attempt at the genetic algorithm. The

features under study were as follows:

GAs are promising methods for solving difficult

technological problems, and machine learning.

More generally, GAs are part of a new movement in

·

computer science that is exploring biologically

inspired approaches to computation. Advocates of

this movement believe that, in order to create these

kinds of computing systems, we need systems that

are adaptable, massively parallel, able to deal with

complexity, able to learn, and even creative—we

should copy natural systems with these qualities.

Natural evolution is a particularly appealing source of

inspiration.

Genetic algorithms are also promising approaches

for modeling the natural systems that inspired their

design. Most models using GAs are meant to be

"gedanken exper iments" or " idea models"

(Roughgarden et al. 1996) rather than precise

simulations attempting to match the real−world

data. The purposes of these idea models are to make

ideas precise and to test their plausibility by

implementing them as computer programs (e.g.,

Hinton and Nowlan's model of the Baldwin effect), to

understand and predict general tendencies of the

natural systems (e.g., Echo), and to see how these

tendencies are affected by changes in the details of

the model (e.g., Collins and Jefferson's variations on

Kirkpatrick's sexual selection model).

Holland's Adaptation in Natural and Artificial Systems,

in which GAs were defined, was one of the first

attempts to set down a general framework for

adaptation in nature and in computers. Holland's

work has had considerable influence on the thinking

of scientists in many fields, and it sets the stage for

most of the subsequent work on GA theory. However,

Holland's theory is not a complete description of the

GA behavior [1].

2.4 K. Devika Rani Dhivya and C. Sunitha (2014): Genetic

Algorithm (GA) for Randomized Unit Testing

This study focuses on the randomized unit testing with

genetic algorithm. This study relied that, the randomized

unit testing with genetic algorithm is less time efficient,

slows down the speed of processing and also produces

less optimized parameters. Randomized unit testing is a

promising technology that has been shown to be

·

·

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

22

effective, but whose thoroughness depends on the

settings of test algorithm parameters. A number of studies

have shown less time efficiency, less optimization process

and Test case generation using the randomized unit

testing with genetic algorithm.

The optimization techniques for GA methods has tools like,

a two-level genetic random testing system-Nighthawk,

Pruned GA with FSS tool, FSS Learner into the genetic

algorithmic level of Nighthawk, and: improved GA with

Nighthawk for RUT are used, but the optimization of the

testing process is not optimal and also produces less test

case generation. The system does not consider the fitness

value for the randomized unit testing, rather it generates

the random selection of software units. Due to the iteration

process, it becomes too complex and time consuming

[5].

2.5 Isatou Hydara, Abu Bakar Md Sultan and Hazura

Zulzalil (2014): Cross-Site Scripting Detection and

Removal Based on Genetic Algorithms

This work heavily relied on the genetic algorithm. It

presented a genetic algorithm-based approach for XSS

detection and removal. Cross-site scripting is a major

security problem for web applications. It can lead to

account or website hijacking, loss of private information,

and denial of service, all of which victimize the site users.

This approach is an improvement based on two

approaches. The first approach uses genetic algorithms

to detect the reflected XSS vulnerabilities only but does

not remove them. The second approach is able to detect

and remove both the reflected and stored XSS

vulnerabilities using the pattern matching technique, but

not DOM-based XSS [6].

2.6 Poonam Saini and Sanjay Tyagi (2012): The Search-

based Optimization Techniques-Genetic Algorithm and

Clonal Selection Algorithm

In software testing, the generation of test data is one of the

key steps, which have a great effect on the automation of

software testing. Since the manual generation of the test

data consumes much of the computational time, the

process of Test Data Generation has been automated.

Software Testing is also an optimization problem with the

objective that the efforts consumed should be minimized.

Therefore, the search based optimization techniques-

Genetic Algorithm (GA) and Clonal Selection Algorithm

(CSA) are used in this work. To generate the suitable data,

methods were traversed to cover each (Figures 1 and 2)

node. Test data values were selected based on

fitness/affinity values of antibodies which satisfy the

predicate node. Based on the predicate node condition,

both algorithms were applied and the optimal test data

was generated. Also, both techniques are compared with

random testing to show that the test data generated by

the search based techniques are better than the random

testing as the number of test data generated for random

testing is less optimal than GA, CSA [7].

2.7 Kriti Singh and Paramjeet Kaur (2014): Regression

Testing using Genetic Algorithm

In this work, a genetic algorithm was developed for

Figure 2. Data Generation using CSA

Figure 1. Data Generation using GA

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

23

prioritizing the test cases on the basis of fault coverage

and execution time as input parameters of regression

testing. Regression testing is a frequently executed

maintenance process used to revalidate the modified

software. Regression testing is one of the type of testing

which works for finding the new software bugs and

regression, where the functional and non functional areas

of a existing system changes after the enhancements,

configuration changes and patches. The intention of the

regression testing is to ensure that the changes that have

been made does not include new faults and also needs

to identify that the changes impact other parts of the

software or not. This work improves the effectiveness of

algorithm with the help of Genetic Algorithm (GA). Total

fault coverage within the time constrained environment

on different examples is used to prioritize the test cases

and their finite solution [8].

2.8 A.M. Sherry and Manish Saraswat (2014): Test Suites

Prioritization for Regression Testing

In this work, A.M Sherry and Manish Saraswat developed a

genetic algorithm on the test cases to prioritize their

execution during Regression testing of the system or

software. They used a fitness function to determine the

efficiency of test case (a test case covers more number of

modified lines is more efficient) and a test case sequence

(or test suite) which has higher fitness value, had higher

priority for execution during the testing. On applying

genetic algorithm for a large number of time or

generations, there is a higher probability for achieving an

optimum solution [9].

2.9 J. Srividhya and K. Alagarsamy (2014): Modified

Genetic Algorithm

J. Srividhya and K. Alagarsamy developed a modified

genetic algorithm for reducing the cost of the regression

testing. In this approach a cross sectional elitist selection is

used to obtain the best individuals. When genetic

algorithm is employed, a near optimal solution is also

obtained. In genetic algorithm, populace of the

chromosome is characterized by diverse codes, for

example, real number, permutation, binary and so forth.

Genetic operators such as selection, mutation and cross

over are employed on the chromosome with a specific

end goal to discover the fittest chromosome. The fitness of

a chromosome is characterized by an objective function.

Genetic algorithm includes the following steps:

Generating the population,

Evaluating the fitness function,

Applying selection operator,

Applying crossover operator,

Evaluating and reproducing the chromosome. The

optimal solution is searched in Modified Genetic

Algorithm on the premise of desired populace which

further could be supplanted with the new set of populace.

Depending on the problem, the generation and

initialization of test cases is carried out. The fitness function

will help in selecting the suitable populace. Furthermore,

the genetic operations are performed. Initially, ring

crossover combines the two single populations [10].

2.10 Ravneet Kaur (2014): Multi-Objective Genetic

Algorithm

This study was similar to (Kriti Singh and Paramjeet Kaur

(2014)), but with an addition to multi-objective for the

regression testing reduction. The multi objective genetic

algorithm overcomes the short comes of the genetic

algorithm. This work focused on optimization of the

regression testing with multi-objective genetic algorithm

which covered parameters like, simplicity and complexity

for test cases for regression testing. Multi-objective

optimization refers to the solution of problems with two or

more objectives to be satisfied simultaneously. Often,

such objectives are in conflict with each other, and are

expressed in different units. Because of their nature, multi-

objective optimization problems normally have not one

but a set of solutions, which are called Pareto-optimal

solutions or non-dominated solutions. When such

solutions are represented in the objective function space,

the graph produced is called the Pareto-front or the

Pareto-optimal set. A general formulation of a multi-

objective optimization problem consists of a number of

objectives with a number of inequality, and equality

constraints [11].

·

·

·

·

·

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

24

2.11 Kirandeep Kaur and Vinay Chopra (2014):

Automatic Test Case Generation from UML Diagram

The main objective of this study are,

To design and implement sequence diagrams for

real time application using Agro UML and to represent

the attributes and operations of objects involved in

the corresponding tree structure.

To design and implement Multi-objective Genetic

algorithm for automatic test case generation for the

above designed tree structures.

To compare the effectiveness and performance of

the designed Multi-objective Genetic algorithm with

Genetic.

Evolutionary algorithms are used for automatic test case

generation. Genetic algorithm is the most widely used

technique for automatic testing. Due to limitation of

Single objective genetic algorithm for which only one

objective can be considered for evaluation of the test

cases, a new technique known as Multi objective Genetic

Algorithm was used for the test case generation from the

UML sequence diagram [12].

2.12 Osaba and R. Carballedo (2014): Combinatorial

Optimization Problems Solving

This study focuses on the influence of using initialization

functions in genetic algorithms applied to combinatorial

optimization problems. In this first stage of the research,

the experimentation was conducted with the well-known

TSP. This experimentation was carried out with three

different heuristic functions. For each operator, the

performance of four different GAs are compared. As final

conclusion of this research, the efficiency of using

heuristic initialization functions are highlighted. Anyway,

the excessive use of them could decrease the

exploration capacity of the GA, trapping the population in

local optimums quickly. Therefore, the key is to maintain a

balance between the individuals initialized by functions,

and the individuals generated randomly [13].

2.13 Chayanika Sharma and Sangeeta Sabharwal

(2013): Software Testing Techniques using Genetic

Algorithm

Chayanika Sharma and Sangeeta Sabharwal developed

·

·

·

a Software Testing Technique using Genetic Algorithm.

The GA is also used with fuzzy as well as the neural networks

in different types of testing. The overall aim of the software

industry is to ensure delivery of high quality software to the

end user. To ensure high quality software, it is required to

test the software. Testing ensures that the software meets

user specifications and requirements. However, the field

of software testing has a number of underlying issues like

effective generation of test cases, prioritisation of test

cases, etc, which needs to be tackled. These issues

demand on effort, time and cost of the testing. Different

techniques and methodologies have been proposed for

taking care of these issues. Use of evolutionary algorithms

for automatic test generation has been an area of interest

for many researchers. It is found that by using GA, the

results and the performance of testing can be improved

[14].

2.14 Josh Kounitz (2014): Understanding Software Test

Cases

This study focuses on software test case understanding. A

test case can have information that includes the test case

name, goal, environment, steps to be taken, input and

expected results. Well-designed test cases are the most

important tools for discovering defects in software. These

tools give you the ability to prevent serious defects, and

even minor ones, from being shipped to the customers.

Good test cases saves time and money and even may

be the reputation of your organization [15].

2.15 Rijwan Khan and Mohd Amjad (2014): Automated

Test Case Generation

This study focuse on the Automated Test Case Generation

using Nature Inspired Meta Heuristics- Genetic Algorithm.

For automation of software testing, the generation of test

data is one of the key step and therefore the generation of

testing data relates to the quality of the software production

indirectly. They have applied the improved genetic

algorithm for automatic test case generation with some

experiment analysis and have shown in their experiment

that, the improved genetic algorithm is superior to the basic

genetic algorithm on effectiveness and efficiency of the

automatic test case generation [16].

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

25

Conclusion

This work has presented a survey on genetic feature

selection for software defect prediction. It would improve

the performance of the software defect prediction. The

authors research plan to develop a Genetic algorithm is

applied to deal with the feature selection, and bagging

technique is employed to deal with the class imbalance

problem. Some systems can be used and reused in

different types of genetic algorithm. But the combination

of genetic algorithm and bagging technique makes an

impressive improvement in prediction performance for

most classifiers.

References

[1]. Mitchell Melanie, (1999). Genetic Algorithm

Introduction. A Bradford Book, The MIT Press Cambridge,

Massachusetts, London, England Fifth Printing.

[2]. Chayanika Sharma and Sangeeta Sabharwal,

(2013). "A Survey on Software Testing Techniques using

Genetic Algorithm". IJCSI International Journal of

Computer Science Issues, Vol.10(1), No.1.

[3]. Nikita Kravtsov and Maxim Buzdalov, (2014). "Worst-

Case Execution Time Test Generation using Genetic

Algorithms with Automated Construction and Online
thSelection of Objectives". 20 International Conference

on Soft Computing MENDEL 2014, Brno, Czech Republic,

June 25 -27.

[4]. AditiPuri and Harshpreet Singh, (2014). "Genetic

Algorithm Based Approach for Finding Faulty Modules in

Open Source Software Systems". International Journal of

Computer Science & Engineering Survey (IJCSES), Vol.5,

No.3.

[5]. K. Devika Rani Dhivya and C. Sunitha, (2014). "A

Review on Optimization Methodologies Used for

Randomized Unit Testing". International Journal of

Advanced Research in Computer Science and Software

Engineering, Vol.4, No.6, pp.748-752.

[6]. Isatou Hydara, Abu Bakar Md Sultan and Hazura

Zulzalil, (2014). "An Approach for Cross-Site Scripting

Detection and Removal Based on Genetic Algorithms".

The Ninth International Conference on Software

Engineering Advances ICSEA.

[7]. PoonamSaini and Sanjay Tyagi, (2014). "Test Data

Generation for Basis Path Testing using Genetic Algorithm

and Clonal Selection Algorithm". International Journal of

Science and Research (IJSR), Vol.3, No.6.

[8]. Kriti Singh and ParamjeetKaur, (2014). "Efficient Test

Cases of Regression Testing using Genetic Algorithm".

International Journal of Advanced Research in

Computer and Communication Engineering, Vol.3,

No.7.

[9]. A.M. Sherry and Manish Saraswat, (2014). "Test Suites

Prioritization for Regression Testing using Genetic

Algorithm". IJETCAS, pp.14-150.

[10]. J. Srividhya and K. Alagarsamy, (2014). "Modified

Genetic Approach for Regression Testing Cost

Reduction". International Journal of Infinite Innovations in

Engineering and Technology, Vol.1, No.1.

[11]. Ravneet Kaur, (2014). "Multi-Objective Genetic

Algorithm For Regression Testing Reduction". IJRET:

International Journal of Research in Engineering and

Technology, Vol.3, No.1.

[12]. Kirandeep Kaur and Vinay Chopra, (2014). "Review

of Automatic Test Case Generation from UML Diagram

using Evolutionary Algorithm". International Journal of

Inventive Engineering and Sciences (IJIES), ISSN:

2319–9598, Vol.2, No.11.

[13]. E. Osaba And R. Carballedo, (2014). "On the

influence of using initialization functions on genetic

algorithms solving combinatorial optimization problems:

a first study on the TSP". IEEE Conference on Evolving and

Adaptive Intelligent Systems.

[14]. Chayanika Sharma and Sangeeta Sabharwal,

(2013). "A Survey on Software Testing Techniques using

Genetic Algorithm". IJCSI International Journal of

Computer Science, Vol.10, No.1.

[15]. Josh Kounitz, “Understanding Software Test Cases”.

[16]. Rijwan Khan and Mohd Amjad, (2014). "Automated

Test Case Generation using Nature Inspired Meta

Heuristics- Genetic Algorithm: A Review Paper".

International Journal of Application or Innovation in

Engineering & Management (IJAIEM), Vol.3, No.11.

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

26

ABOUT THE AUTHORS

R. Reena is a post graduate in Computer Science, from University of Madras, Chennai, Tamilnadu. She is currently a Research
Scholar in the Department of Computer Science at Government Arts College, Chennai, Tamilnadu. Her research area is Software
Engineering.

R. Thirumalaiselvi has more than 20 years of experience in various Engineering, Arts and Science Colleges. At present she is
working as an Assistant Professor in the Department of Computer Science at Government Arts College, Nandanam, Chennai. Her
areas of specialization are Software Engineering, and Web Engineering and has published many papers both in National and
International Journals and also in imanager’s Journal on Software Engineering.

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

REVIEW PAPER

	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

