
RESEARCH PAPERS

14

INTRODUCTION

Parallel computers can be approximately categorized

according to the level at which the hardware supports

parallelism. Through multicore and multiprocessor

computers having many processing elements within a

particular machine, clusters, Massively Parallel Processing

(MPP) and Grids use multiple computers to work on the

similar tasks.

Multicore Computing

A multicore processor [1] comprises multiple execution

units (cores) on the same chip. Each core in a multicore

processor can possibly be superscalar as well as on each

cycle, each core can perform multiple instructions from

one instruction stream. Simultaneous Multi Threading

(SMT) was an initial form of pseudo multicoreism. A

processor capable of SMT has only one core, but when

that execution unit is idling, it uses that execution unit to

process a second thread.

Symmetric Multiprocessing

A SMP [2] is a computer system with multiple identical

processors that share memory and associate via a bus.

The bus argument prevents bus architectures from

scaling, which do not include more than 32 processors.

Distributed Computing

A distributed computer [3] is a distributed memory

computer system in which the processing elements are

connected by a network. Distributed computers are

extremely scalable.

Cluster Computing

Clusters [3] are a collection of multiple stand alone

computers connected by a network. Though the

computers in a cluster do not have to be symmetric, load

balancing is more problematic if they are not. The most

collective type of cluster is the Beowulf cluster, is a cluster

applied on multiple identical commercial standard

computers connected with a TCP/IP Ethernet Local Area

Network.

Massive Parallel Processing (MPP)

It is a single computer with many networked processors.

MPPs [4] have numerous of the same features as clusters,

but MPPs have particular interconnect networks. MPPs also

tend to be larger than clusters, normally having more than

100 processors.

Grid Computing

Grid computing [3,4] is the most distributed forms of

APPROACHING DEVELOPMENTS ON PARALLEL
PROGRAMMING MODELS THROUGH JAVA

By

ABSTRACT

Multicore platforms allow developers to optimize applications by intelligent partitioning at different workloads on

different processor cores. Currently, application programs are optimized to use multiple processor resources, resulting in

faster application performance. earlier research work focused on native thread for Java on windows thread,

Pthread, and Intel TBB. also developed Native Threads, Native Pthread, Java Native Intel TBB beneath

windows 32-bit platform. This article aims to identify the future directions of native thread for Java on windows thread,

Pthread, and Intel TBB through JNI beneath windows 64-bit platforms and other platform besides. Furthermore, it

articulates additional opening to pursue approaching developments on parallel programming models through Java.

Keywords: CPU, CUDA, GPGPU, GPU, Java, jCuda, jocl, Multicore, OpenCL.

The authors

The authors

* Research Scholar, Department of Information Technology, Manonmaniam Sundaranar University, Tamilnadu, India.
** Assistant Professor, Department of Computer Science, Chikkanna Govt Arts College, Tamilnadu, India.

BALA DHANDAYUTHAPANI VEERASAMY * G.M. NASIRA **

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

RESEARCH PAPERS

15

parallel computing. It makes use of computers

connecting over the Internet to work on a given problem.

Grid computing applications use middleware software

that connects between the operating system and the

application to manage network resources and

standardize the software interface.

Field Programmable Gate Arrays (FPGA)

Reconfigurable computing is the use of an FPGA [4] as a

co-processor to a general-purpose computer. The FPGA

is in essence a computer chip that can rewire itself for a

given task.

General Purpose Computing on Graphics Processing

Units (GPGPU)

GPUs [1,4] are coprocessors have been deeply

enhanced for computer graphics processing. Computer

graphics processing is a field dominated by data parallel

operations mostly on linear algebra matrix operations.

Programming languages and platforms have been

made to do general purpose computation on GPUs with

both NVIDIA and Advanced Micro Devices (AMD)

releasing programming environments with CUDA and

Stream SDK respectively. The consortium Khronos Group

released the OpenCL specification, it is a framework for

writing programs that executes across platforms

consisting of CPUs and GPUs, AMD, Apple, Intel, NVIDIA.

1. Research Work Developed

The aimed research work were identified and developed

for the parallel programming model implementations

through Java. The research work provided a prototype

model to produce any other language threading

features to the Java language. The research works done

are summarized as follows.

Provided methods to set CPU affinity [5] for Java

threads in Win32 platform.

Developed an application with parallel execution,

such as parallel one time pad [6] using Java.

Developed a JNI program to support Win32 platform

thread [7] for Java, evaluating Java threads and

Native Thread to schedule and execute in the hybrid

mode.

·

·

·

·

·

·

·

·

Developed JNI program to support Pthread [8] for

Java and also evaluated Java threads and Native

Thread to schedule and execute in the hybrid mode.

Developed JNI program to support Intel TBB [9] for

Java.

Evaluated the performance [10] of Java Native

Thread and Native PThread on Win32 platform.

Developed Native PThread [11] on Android platform

using Android NDK.

Explored the contrast [12] on GPGPU computing

through CUDA and OpenCL.

2. Summary of the Research Work

The parallel programming model developed and

examined with the framework model and its organization

is shown in Figure 1. The encircled dotted portion of the

framework shows the overview of the carried out research

work. Parallel programs can be utilized on CPU, GPU,

Distributed, Cluster, Grid, MPP and FPGA. The framework

which the authors implemented is suitable to the

multicore CPU platform for both task parallelism and data

parallelism.

Multicore platforms allow developers to enhanced

applications by intelligent partitioning of the dissimilar

workloads on dissimilar processor cores. Application

code can be improved to use multiple processor

resources resulting in faster application performance.

Successive multi-threaded applications on multicore

platforms have dissimilar design thoughts than

performing successive multi-threaded applications on

single-core platforms.

The authors provided task parallelism on a desktop or

laptop computer through Just Peculiar Algorithm, Java

Native Access, Win32 thread and Pthread. Just Peculiar

Algorithm has been used to set affinity for thread in

multicore processor's environment.

Java Native Access mainly provided all the operating

system related functionalities in which, they only use to

create and set the affinity for thread in multicore

processors. The task parallelism [7,8,13] on Win32 thread,

POSIX thread were developed using JNI, which enabled

to the usage of extra features like setting affinity for thread

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

RESEARCH PAPERS

16

to schedule the task parallelism on different multicore

processors.

The data parallelism on native Intel TBB threads [9] is

developed using JNI, which enabled to support data

parallelism on different multicore processors. In native

TBB, the authors have used parallel_for template, which

allowed to perform addition, subtraction, multiplication

and division operations. The native Intel TBB can also be

extended in the future to use another template available

in Intel TBB such as, parallel_scan, parallel_do,

parallel_for_each, parallel_pipeline, parallel_sort and

parallel_invoke.

The authors provided task parallelism on Android platform

[11], which are developed using Android NDK. Android

NDK provides a platform for specific structures and trusts

on JNI expertise to stick the native code to the Android

applications. They also deliberated, how android

applications can facilitate in setting affinity using Pthread

through Android NDK that can make Pthread to execute

task parallelism in hybrid mode with Java threads.

Programming on GPU [12] is supported through SIMD

architectures. General Purpose GPU (GPGPU) computing

has allowed the GPU to arise as successful co-processors

that can be employed to improve the presentation of

Figure 1. Framework for Parallel Programming Model

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

RESEARCH PAPERS

17

many dissimilar non-graphical applications. CUDA and

OpenCL offer two different interfaces for programming

GPUs. Java can facilitate for General Purpose GPU

Computing. The authors identified the contrast between

CUDA and OpenCL to help the HPC programmers to

familiarize with GPGPU. The jcuda and jocl are the native

libraries available for Java to perform data parallelism on

GPU. However the jcuda or jocl libraries are not up to the

present version available for CUDA or OpenCL, since there

is a large opening on improving the data parallel library

on GPU for Java language.

3. Promoting the Research

There are determined tasks, that promotes the research.

They are listed below.

The advantage of fixing CPU affinity is optimizing

cache performances.

Thread migration on multicore processor are able to

migrate thread execution from the core processor to

another.

Java threads and NativeThread can be executed in

the hybrid mode.

Performance improvements are done in parallel

programming models using Java Native Interfaces.

Both task parallelism and data parallelism can be

implemented to take advantage of the multicore

processing environment.

Supports more than one native thread methods in

each program in different devices like Desktop,

Laptop and Mobile Devices.

The research work has been identified and developed a

parallel programming model through the Java Native

Interface. It provided a prototype model to incorporate

the features of another language to the Java language.

4. Challenges in Parallel Programming Implementation

Java Native Interface (JNI) is a robust aspect of the Java.

JNI designate a method for controlling the program

written in the Java programming language to jointly make

effort with the native program that is written in C/C++. JNI

permits accurate methods of Java classes to be applied

natively and are still be entitled and used as normal Java

·

·

·

·

·

·

methods. The Native Thread is scheduled by the

operating system that is hosted in the virtual machine.

There were challenges in the model implementations,

which are listed below.

Java does not support pointer concept, but C/C++

does. If any flaw occurs technically in pointer

conversion, it may lead to memory leakage which

are the major challenges of this research work to write

native code to support affinity thread for Java.

In this research, the authors have implemented both

win32 thread and Pthread with limited functionalities

and have not focused on all the other features of

win32 thread and Pthread such as, thread priorities,

thread synchronization, and access to some

resource, which locks the resource that many threads

may need to access. That can be accessed by only

one thread at a time.

In the research, the authors have implemented Intel

TBB with parallel_for template to do data parallelism

and they have not used all the other features of Intel

TBB such as parallel_reduce, parallel_scan,

parallel_do, parallel_for_each, parallel_sort, locks

and atomic operations, a task scheduler and a

scalable memory allocator.

The authors are unable to implement al l

functionalities of Pthread on Android platform, since

Android NDK provides a limited version of Pthread

library.

Except JPA model, all other parallel programming

models that were developed are platform

dependent.

Assigning and retrieving the names of any thread is

also a big challenge.

5. Future Directions

The future direction will be focused on the windows

thread, Pthread, and Intel TBB through JNI for windows

64bit platforms and other platforms.

++Boost threads, C 11 threads, and Intel Cilk Plus

thread features have been also implemented on

Win32 bit and Win64 bit platforms for Java.

·

·

·

·

·

·

·

·

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

RESEARCH PAPERS

18

·

·

·

·

Improving the available native Intel TBB from Intel TBB,

other than parallel_for loop.

Improving the available Native Thread for win32 and

NativePThread for win32 to the next level.

GPU Computing for Java can be provided through

the JNI. Through JNI, OpenCL and CUDA

programming can be availed for Java. However, this

is identified that jocl and jcuda are the Java binding

for GPGPU computing, though this binding are not

latest to the current maintained library on OpenCL or

CUDA. Hence the authors can also bring a full-

fledged version of OpenCL and CUDA programming

for Java.

The performance can be compared between Intel

TBB on CPU data parallelization with jcuda and jocl on

GPU data parallelization.

Conclusion

The parallel programming model has been developed

for both task and data parallelism on Desktops, Laptops

and Android mobile devices. The task parallelism are

carried out using Just Peculiar Algorithm (JPA), Java Native

Access (JNA), Native Thread for win32, Native PThread for

win32 and Native PThread for Android, whereas the

parallel programming model developed for the data

parallelism on multicore processor uses Native Intel TBB.

The data parallelism model of GPU is GPGPU computing.

Most of the research works focus on native thread for Java

on windows 32-bit platform. The listed future directions

enable the researchers to enhance the developments of

parallel programming models for Java on windows 64-bit.

The researchers can attempt to implement boost
++threads, C 11 threads, and Intel Cilk Plus thread features

for Java on windows 32 bit as well as on windows 64 bit

platforms. It is not limited; the researchers have got

opening to enhance other features.

References

[1]. Darryl Gove, (2011). Multicore Application
®Programming For Windows, Linux, and Oracle Solaris,

Pearson Education, ISBN:10: 0-321-71137-8.

[2]. Thomas Rauber, and Gudula Runger, (2010). Parallel

Programming for Multicore and Cluster Systems.

Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-04817-

3, DOI 10.1007/978-3-642-04818-0.

[3]. Timothy G. Mattson, Beverly A. Sanders, and Berna L.

Massingill, (2004). Pattern Language for Parallel

Programming. Addison-Wesley, ISBN:10: 0321228111.

[4]. David B. Kirk and Wen-mei W. Hwu, (2010).

“Programming Massively Parallel Processors - A Hands-on

Approach”, Elsevier.

[5]. Bala Dhandayuthapani Veerasamy, and G.M.

Nasira, (2012). “Setting CPU Affinity in Windows-based SMP

Systems using Java”. International Journal of Scientific &

Engineering Research, Vol.3, No.4, pp.893-900, ISSN:

2229-5518.

[6]. Bala Dhandayuthapani Veerasamy, and G.M.

Nasira, (2012). “Parallel: One Time Pad using Java”.

International Journal of Scientific & Engineering

Research, Vol.3, No.11, pp.1109-1117, ISSN 2229-5518.

[7]. Bala Dhandayuthapani Veerasamy and G.M. Nasira,

(2013). “JNT - Java Native Thread for Win32 Platform”.

International Journal of Computer Applications, Vol.70,

No.24, pp.1-9, Foundation of Computer Science, New

York, USA, ISSN: 0975 - 8887.

[8]. Bala Dhandayuthapani Veerasamy and G.M. Nasira,

(2014). “Java Native PThreads for Win32 Platform”. World

Congress on Computing and Communication

Technologies (WCCCT'14), pp.195-199, Tiruchirappalli.

[9]. Bala Dhandayuthapani Veerasamy and G.M. Nasira,

“Java Native Intel Thread Building Blocks for Win32

Platform”. Asian Journal of Information Technology,

Vol.13, No.8, pp.431-437, Medwell Publishing, ISSN: 682-

3915 (Print), 993-5994 (Online).

[10]. Bala Dhandayuthapani Veerasamy and G.M.

Nasira, (2015). “Per formance Analysis of Java

NativeThread and Native Pthread on Win32 Platform”.

International Journal of Computational Intelligence and

Informatics, Vol.4, No.4, pp.255-263, ISSN: 2349-6363.

[11]. Bala Dhandayuthapani Veerasamy and G.M.

Nasira, (2014). “Native PThread on Android Platform using

Android NDK”. Karpagam Journal of Computer Science

(KJCS), Vol.9, No.1, pp.1-18, ISSN : 0973-2926

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

RESEARCH PAPERS

19

[12]. Bala Dhandayuthapani Veerasamy and G.M.

Nasira, (2014). “Exploring the contrast on GPGPU

computing through CUDA and OpenCL”. i-manager's

Journal on Software Engineering, Vol.9, No.1, pp.1-8, ISSN

Print: 0973-5151, ISSN Online: 2230-7168.

[13]. Bala Dhandayuthapani Veerasamy and G.M.

Nasira, (2014). “Overall Aspects of Java Native Thread on

Win32 Platform”. Second International Conference on

Emerging Research in Computing, Information,

Communication and Applications (ERCICA-2014), Vol. 2,

pp.667-675, Bangalore, published in Elsevier in India.

ISBN: 9789351072621.

ABOUT THE AUTHORS

Bala Dhandayuthapani Veerasamy is currently working as an IT Lecturer at Shinas College of Technology, Oman. He received his
B.Sc in Computer Science from Bharathidasan University in 2000. He received his first master Degree (M.S) in Information
Technology from Bharathidasan University in 2002 and he received his second master Degree (M.Tech) in Information Technology
from Allahabad Agricultural Institute Deemed University in 2005. Presently, he is pursuing his part-time external PhD in the areas of
Information Technology from Manonmaniam Sundaranar University. So far, he has presented more than twenty-five peer
reviewed research papers in various International Conferences and Journals.

G.M. Nasira is currently working as an Assistant Professor in the Department of Computer Science, at Chikkannna Government
Arts College, Tiruppur, India. She got her B.Sc (Computer Science) from Madras University, MCA from Bharathidasan University,
B.Ed and M.Phil from Bharathiyar University. She got her Ph.D. in Computer Science from Mother Teresa Women's University,
Kodaikanal with the specialisation if Artificial Neural Networks. She has published 12 research papers in referred Journals and
presented 50 papers in various Conferences and Seminars. In addition, she has also authored a book titled ‘Fundamentals of
Middleware Technologies and Web Technologies.

i-manager’s Journal o Software l ln Engineering, Vol. 10 No. 3 January - March 2016

	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

