
6

RESEARCH PAPERS

INTRODUCTION

Design pattern is a blueprint or model solution to a 

frequently occurring design problem. While it is useful in 

reusing the object oriented software components without 

reinventing the wheel, it also helps in making solutions in 

time and budget [3]. The term “pattern” was inspired by 

the work of Alexander Christopher in 1977 in the context of 

architectural patterns [2]. According to Schmidt [1], there 

is increasing pressure on development teams to produce 

quality software. This in fact leads to the reuse of code in 

both fine grain and coarse grain fashions. The original 

design patterns proposed by Gamma et al. [4] are 

classified into creational, structural and behavioural 

patterns. The creational patterns include Abstract 

Factory, Factory Method, Builder, Prototype and 

Singleton. These patterns are used to construct objects in 

a system independent manner. The structural patterns 

include Adapter, Bridge, Composite, Decorator, Facade, 

Flyweight, and Proxy. These patterns are meant for forming 

large object structures that will simplify design. The 

behavioural patterns include Chain of Responsibility, 

Command, Interpreter, Iterator, Mediator, Memento, 

Observer, State, Strategy, Template Method and Visitor.

There are many instances that show how design patterns 

revolutionized application development when are used 

to build frameworks. For instance, Aspect Oriented 

Programming (AOP) paradigm is based on Decorator 

design pattern, while Java's SWING is based on Observer 

and Model View Controller (MVC) design patterns. Design 

patterns play a vital role to achieve the actual 

LEVERAGING CONFIGURATION MANAGEMENT AND
PRODUCT EVOLUTION OF SPL USING VARIABILITY

AWARE DESIGN PATTERNS

By

ABSTRACT

Software Product Line (SPL) is an emerging approach to satisfy the ever-increasing customization demands by reusing 

commonalities and variability's. Variability - aware design patterns can leverage SPL configuration management and 

evolution of new products. Design pattern is a blueprint or model solution to a frequently occurring design problem. 

Variability aware design patterns can address variability and help in customizing software products. Modularization of 

artefacts and reusability of them can be realized by using design patterns. Design patterns in SPL is relatively used in new 

research area. However, composite design patterns that are variability-aware can lead to the realization of high quality 

SPL. In this context, the configuration management and product derivation are to be conceived and handled. There are 

no dedicated efforts found in the literature to leverage the usage of design patterns in SPL. The authors proposed a 

framework and provided provision for variability-aware design patterns. They use the concept of roles and map them to 

variability model. Then they map design pattern roles to artefacts thus realizing variability with industry best practices. This 

will help in improving the dynamic reconfiguration of SPL artefacts. Their empirical evaluation shows that the approach 

improved performance up to 20% with respect to configuration management of SPL and product derivation. The 

prototype demonstrates the proof of concept.

Keywords: Variability, Variability-aware Design Patterns, Configuration Management, Software Product Lines, Product 

Derivation.

* Associate Professor, Department of Computer Science Engineering, CMRCET, JNTUH, Telangana, India.
** Professor and Director, Department of Computer Science Engineering, JNTUA, Ananthapuramu, Andhra Pradesh, India.

K.L.S. SOUJANYA * A. ANANDA RAO **

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

7

implementations that can be reused with ease [2]. 

Variability-aware design patterns and concepts were 

explored in [5], [6], [7], [8], [9], [10] and [11].

Having understood the significance of design patterns, in 

this paper the authors explored the usage of variability-

aware design patterns in SPL configuration and derivation 

of new product. Their contributions include the design and 

implementation of variability-aware design patterns and 

mapping their roles to artefacts. This will help in optimizing 

SPL configuration management and also affect product 

derivation. The remainder of the paper is structured as 

follows. Section 1 on Related work. Section 2 throws light 

into variability-aware design patterns. Section 3 presents 

the optimization of SPL configuration management 

though variability aware design patterns. Section 4 

explains the evaluation procedure. Section 5 concludes 

the paper besides providing directions for future work.

1. Related Work

Variability-aware design patterns and their usage were 

found in the literature, while the effects of that on 

configuration management of SPL and product evolution 

are explored in this paper. Becker [5] proposed a model 

for variability in SPL to manage variability systematically 

and efficiently. Parra et al. [6] explored AOP and design 

patterns to enhance SPL and runtime adaptation. Tizzei et 

al. [7] also studied AOP for assessing design stability of SPL 

by comparing OO and AO approaches. Fortier et al. [8] 

proposed design patterns for dealing with variability in SPL 

pertaining to mobile software. They studied the impact of 

variability in different domains. Hammouda et al. [9] 

studied feature-driven variability and design patterns for 

separation of concerns for better change management.

Alves et al. [10] analyzed variability and commonality in 

variation management between Runtime Adaptable 

System (RTA) and SPL. Schuster [11] employed role 

modelling for pattern-based SPL design. The roles present 

in a variability-aware design pattern are mapped to 

elements of artefacts in SPL. This work is closely related to 

the authors work in this paper. In [11], the variability-aware 

design patterns were explored for enhancing SPL. 

However, the work in this paper focuses on leveraging 

configuration management and product evolution in an 

SPL through variability-aware design patterns. The focus of 

this paper is to optimize performance of configuration 

management and product derivation.

2. Variability-Aware Design Patterns and Role Modelling

Before entering into the subject of variability-aware design 

patterns and role modelling for improved derivation of 

new product and effective configuration management 

of SPL, the authors provide the context in which the paper 

proposed about variability aware design patterns.

2.1 Overview of the Proposed Framework

The authors proposed and implemented a framework 

that has provision for configuration management, and 

product derivation. Their focus in this paper is to 

investigate how the variability-aware design patterns can 

contribute to the improved configuration management 

of SPL and effective product derivation. This is the 

rationale behind showing the framework (it was proposed 

by the authors in their previous paper titled “A Generic 

Framework for Configuration Management of SPL and 

Controlling Evolution of Complex Software Products” [12]) 

in Figure 1 for completeness.

Therefore, the focus of this paper is about the variability-

Figure 1. Overview of Proposed Framework 

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

8

aware design pattern. More information on the framework 

can be found in their previous paper [12].

2.2 Variability – Aware Design Patterns

In the context of SPL, commonalities and variability's are 

the two things that are exploited. However, there are 

certain challenges that are thrown to software engineers 

when dealing with SPL. The challenges can recur and 

need best practices or design patterns to overcome the 

issues. Design patterns are the proven solutions to 

recurring design problems in object oriented software 

development. Now before knowing variability-aware 

design patterns, variability is defined. Variability refers to 

the differences between the products in the SPL. The 

differences between products in SPL can also be 

understood in terms of features. Therefore differences in 

features can be attributed to variability. As products in a 

family of products tend to vary, the variability is reflected. 

Due to the variability's and the dynamic nature of 

contemporary software requirements, it became 

indispensable to consider variability's in SPL and handle 

them. They cannot be ignored and to be taken into 

account. This paper throws light into the advantages of 

considering variability-aware design patterns and how 

they can cater to improved configuration management 

of SPL and effective product derivation.

In the framework presented in Figure 1, a placeholder is 

for “variability-aware design patterns” which can help in 

handling variability's in SPLs effectively. Having understood 

the variability, let us know more about variability-aware 

design pattern. It is the design pattern that can handle 

variability's so as to reduce design effort and time. It also 

can lead to simplified configuration management 

product derivation. This hypothesis is tested in this paper. 

The details in the subsequent sections provide the 

dynamics of this proposition. In other words, the ability to 

customize or change a system is known as variability [13]. 

Since SPL is to maximize the reuse of commonalities and 

variability's besides simplifying customization, variability-

awareness is essential.

2.3 Managing Variability

In SPL, it is very important to keep the future changes in 

mind while designing systems. It is not easy to support 

variability unless the architecture is flexible and can adapt 

to new features. There are many aspects involved in 

managing variability. They are identifying variability, 

introducing variability into the system, collecting the 

variants, and binding the system to one variant. First of all, 

the developers need to understand the changing 

requirements and incorporate them in the requirements 

specification of SPL. In this process, they need to identify 

the variability's based on the proposed customizations 

or changes. Once it is done, the variability's are to be 

implemented in order to pave way for a customized 

product. There are many variants associated with one 

variability point. Such variants are to be collected. When 

developers collect variants, the system can adapt to 

different variants based on the requirement. Finally, the 

system has to be bound to one particular variant. Again 

the binding can be done internally or externally based 

on the component in which funct ional i ty i s 

implemented. Often the configuration management 

tools perform the binding.

Table 1 shows the three patterns viz the variant entity, 

optional entity and multiple coexisting entity pertaining to 

variability and the characteristics of them which are 

compared that includes feature diagram, management, 

scope of binding, collection, binding and open and 

closed. Variant entity and optional entities can be 

determined by the developers, while the multiple 

coexisting entity needs system to be processed to choose 

between the available variations.

Table 1. Three Patterns Pertaining to Variability and their Characteristics (excerpt from [13])

Characteristic Variant Entity Optimal Entity Multiple Coexisting Entity

Feature Diagram XOR branch Optimal feature Or branch

Management Separate from use Separate from use Performed for every use

Scope of Binding Valid for entire system Valid for entire system Valid for one use

Collection Implicit or Explicit Not Applicable Explicit

Binding External or Internal External or Internal Internal

Open and Closed Depends on Runtime Environment Immediately Closed Depends on Runtime environment

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

9

2.4 Role Modelling

In the context of object oriented programming, a solution is 

made in terms of objects and the interactions among the 

objects. Having said this, it is true that an object in the real 

world can play different roles. Due to collaborations with 

other objects, they can exhibit the different roles they can 

play. Thus the concept of role modelling is emerged. This 

has been used in this paper to adapt it to variability-aware 

design patterns that can simplify SPL, its configuration and 

product derivation. Role modelling can build the gap 

between concrete design (class diagram for instance) 

and a design idea (with collaborations in mind) [11]. Roles 

can capture true dynamics of real objects instead of a 

static structure [14]. The following notations are used in 

role modelling.

As shown in Table 2, the notations are presented and they 

are used in the subsequent sections to describe how the 

role modelling can be employed to variability-aware 

design patterns.

2.5 Defining a Variability Aware Design Pattern

When design patterns encapsulate variability's, they are 

known as variability-aware design patterns. On the other 

hand, role modelling can help identify collaborating parts 

in design patterns. A family of role models can be 

captured and used for describing variability-aware 

design patterns. By combining two role models, a family 

of role models can be derived. Here is an example for 

variability-aware design pattern (Figure 2), which is a 

hybrid design pattern, namely Adapter Facade, which 

combines Adapter and Facade patterns is proposed by 

Gamma et al. [4]. The Adapter Facade pattern thus 

proposed exploits inheritance for adapting incompatible 

classes besides unifying interface for client. In the next 

section, the authors relate this pattern with role modelling 

and mapping the roles to artefacts.

2.5.1 Intent

This design pattern converts incompatible interface of a 

class into another interface, thus enabling incompatible 

classes to work together besides providing a unified and 

high level interface to a sub system of interfaces. Thus it is 

can adapt between classes and provide a simplified 

interface to a class library.

2.5.2 Motivation

There are cases where two classes need to have 

interaction. However, they could not interact due to subtle 

differences in interfaces. In other words, they are not 

compatible with each other. Yet they have functionality 

that can be reused and the problem is with interfacing. 

Another case is that, there are many classes with different 

interfaces. A unified interface is lacking thus making it 

unduly complex. In this case, a design pattern that can 

play the dual role of removing incompatibility and 

bestowing a simplified interface to a sub system of 

classes is very handy from the design perspective.

Consider for example, a customer wants to book tickets 

for his travelling requirements. He approaches a travel 

agent who has required interface for booking flight tickets 

locally and internationally. The interface is defied in a pure 

abstract class called Booking Agent which has 

incompatibility with other classes like United States. The 

booking sub system of USA has plethora of interfaces that 

are so complex. In this context, how can the classes that 

have incompatible classes work together? And how can 

the USA bookings sub system interfaces can be simplified or 

unified? To achieve this, new design pattern (Adapter 

Facade) is defined. In travel booking example, the design 

pattern plays dual role of playing a facade (coarse grained 

interface) to USA travel sub system and being adaptive to 

incompatible interfaces of the class United States.

2.5.3 Structure

The consequences of the design patters are described 
Table 2. Shows Notations used for Role Modelling

Notation Description Example

Use Indicates that an object playing certain role
uses another object playing different role. 

Association Two objects playing different roles
are known to each other.

Prohibition Two objects are exclusive in playing
two different roles.

Implication It implies that object playing role
A should also play role B.

Equivalence It implies that object playing role A should
also play role B and vice versa. 

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

10

here. Adapting sub classes of Adaptee is not possible. It 

might override the Adaptee's behaviour. A single instance 

adapter is used with having any pointer for indirection. It 

shields clients from sub system. It does mean that the 

subsystem is transparent to sub system. Its complexity is 

made simple. It promotes loose coupling between clients 

and the sub system. The components in the sub system 

might be strongly coupled. Complex and circular 

dependencies are avoided. Reduces compilation 

dependencies, thus making very complex systems look 

simple. The design pattern doesn't force to avoid the 

usage of sub system directly. This pattern can be used, 

when it is required to reduce the coupling of clients with 

sub system by making a unified interface with course 

grained calls to diversified and fine grained sub system 

interfaces and eliminate the incompatibilities between 

classes with similar and compatible functionalities.

A pattern has number of roles associated with it. The roles 

are in turn bound to the system elements that are part of 

various artefacts. A hybrid design pattern such as Adapter 

Facade described earlier can have a family of roles that 

can be associated with many artefacts. A variability-

aware design pattern is a collection of software elements 

that separate a concern in SPL.

2.6 Modelling Adapter Facade Design Pattern Using 

Role Modelling

With respect to reservation system SPL, the role modelling 

and mapping the roles to artefacts is described in this sub 

section. The role diagram presented in Figure 3 provides 

the roles and the relationships among them. These roles 

belong to the reservation system. The Adapter Facade 

design pattern is variability aware and the roles in the 

system are having certain relationship with other roles. The 

possible relationships as given in Table 2 are Use, 

Association, Prohibition, Implication, and Equivalence.

The roles identified are client, target, facade, adapter, 

adaptee and subsystem. These roles are actually taken 

from the simplified system for brevity. The client role has 

Use relationship with target role. In the same fashion, the 

facade role has Use relationship with subsystem role. The 

facade and adapter have implication relationship with 

target role. The adapter and adaptee roles do have 

prohibit ion relat ionship between them. These 

relationships are as per the role modelling concept that is 

pertaining to the variability-aware design patterns.

As shown in Figure 4, the client role is mapped to Traveler, 

which actually initiates the reservation process. The target 

role is mapped to the Booking Agent, which is actually the 

interface which is responsible for all reservation 

functionalities. The Facade role is associated with 

International Travels which acts as a facade to many sub 

system classes. This will make many fine grained calls to 

the subsystem to achieve reservation job. The facade 

works as the simplified interface between the Booking 

Agent and subsystem classes. Facade avoids many 

round trip calls to server in order to improve performance. 

The adapter role is associated with International Travels 

class. It is responsible to convert the incompatible 

interface present inthe United States class into a 

compatible interface. Thus the adapter class makes it 

Figure 2. Composite Design Pattern Named Adapter Facade

Figure 3. Role Diagram for Reservation System 

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

11

possible to integrate with other systems and handle 

variability. The adaptee role associated with the United 

States class is responsible to have reservations with flights 

operated from the United States of America. The role 

modelling and mapping results in simplification of SPL 

configuration management besides improving the 

performance of product derivation. These two claims are 

evaluated with human experts as described in section 4.

3. Variability-aware Design Patterns for Optimizing 

Configuration Management and Product Derivation

Variability-aware design patterns can help in handling 

cross-cutting concerns. As such, patterns comprise many 

roles that are mapped to the elements of artefacts in SPL 

and the configuration management of SPL get 

optimized. All elements that are bound to a role can be 

easily configured and managed. The usage of variability-

aware design patterns can not only separate cross-

cutting concerns, but also help in managing 

configuration of artefacts of SPL with ease. The 

productivity in SPL configuration management and the 

accuracy in the derivation of new product are improved. 

The hybrid design pattern presented in Figure 2 plays an 

adapter role and also facade role besides other roles. In 

reservation system SPL the configuration management 

has been simplified due to the usage of variability-aware 

design patterns. The role modelling and mapping roles to 

artefacts was described in the previous section. The 

authors have built a prototype application that 

demonstrates the proof of this concept. The prototype 

has provision for mapping roles into elements of artefacts 

thus making the cross cutting concerns to be managed 

with ease. The versioning and reconfiguration is made 

simple. The product derivation is also proved to be 

consistent and accurate.

The prototype has features that help to configure 

artefacts that contain elements which are mapped to the 

roles in design patterns. The mapping of roles to elements 

of artefacts optimizes the process of configuration 

management. This is due to the fact that the cross cutting 

concerns are separated in the form of variability-aware 

design patterns. This has improved the flexibility and 

configuration management of the prototype along with 

product derivation.

3.1 Case Studies Considered

Reservation system, Dr. School and Library Management 

System (LMS) are the three SPLs considered for 

experimentation. These case studies are supported by 

the prototype that were developed using Java 

programming language. The prototype demonstrates 

the configuration management and product derivation. 

In this paper, the authors have provided the details of 

Reservation System in terms of variability aware design 

pattern usage, role modelling and roll mapping. 

However, the implementation and evaluation was done 

for all three SPLs. Due to space constraint, Dr. School and 

LMS could not be elaborated. However, the evaluation 

results are presented in the subsequent section.

4. Evaluation

The evaluation methodology used has been described 

here. They have evaluated the proposed approach with 

different SPLs. This prototype application with and without 

variability-aware design patterns for SPLs were given to 15 

Figure 4. Mapping of Role Modelling to Class
Hierarchy in Reservation System SPL

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

12

human experts. These experts do have experience in 

software engineering methodologies and working 

knowledge in SPL design and implementation. They have 

expertise in design patterns as well. These experts are from 

different software companies located in India. They 

approached more than 25 experts who were working for 

different organizations. And 15 members have accepted 

their request to evaluate this prototype. Out of 15 

candidates selected, only 10 members could participate 

in the evaluation. Their main focus was to evaluate the 

variability-aware design patterns usage in SPL. They 

conducted experiments with three SPLs to know the 

impact of variability-aware design patterns on SPL 

configuration management and product derivation. 

Their study is two-fold in nature. First, they did experiments 

using prototype without variability-aware design patterns 

(PROTOTYPE I). Second, they did experiments using 

prototype with variability-aware design patterns (PROTYPE 

II). Both sets of experiments were on configuration 

management and product derivation efficiency.

SPL configuration management is evaluated in terms of 

the time taken, number of updates and ease of retrieval. 

Product derivation is evaluated in terms of accuracy in 

derivation of product with high quality artefacts. Their 

findings are given in terms of percentage difference 

between the Prototype I and Prototype II. The 

percentages given by 10 experts are taken and average 

percentage is found. The evaluation results of their 

observations on three SPLs are as shown in Figure 5 and 

Figure 6.

As seen in Figure 5 and Figure 6, there is performance 

improvement in both configuration management and 

product derivation. This is from the view point of human 

experts who were involved in the evaluation of the 

prototype that incorporated variability-aware design 

patterns. There is a significant percentage difference 

between the PROTOTYPE I and PROTOTYPE II with respect to 

configuration management and product derivation.

Conclusions and Future work

In this paper, the authors incorporated variability-aware 

design patterns into configuration management and 

product derivation, which is the main prototype. The idea 

behind this was to exploit the concept of roles in design 

patterns that can be mapped to elements of artefacts for 

optimization of SPL besides product derivation and 

configuration management. The authors evaluated their 

prototype with three SPLs such as reservation system, Dr. 

School and LMS. The evaluation was carried out by select 

human experts.

They evaluated PROTOTYPE I and PROTOTYPE II on the three 

SPLs and provided their performance observations in 

terms of product derivation and configuration 

management. The empirical results revealed that the 

usage of variability-aware design patterns improved the 

performance of SPL configuration management and 

product derivation. The performance is improved by up to 

20 percent. This research can be extended further to 

improve this prototype for incorporating ontology's for real 

time reconfiguration of SPL and its artefacts.

Acknowledgements

The authors thank the reviewers at ROSE lab, JNTUA, 
Figure 5. The Average of Performance % given by

Human Experts (Configuration Optimization)

Figure 6. The Average of Performance % given by
Human Experts (Product Derivation Optimization)

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016



RESEARCH PAPERS

13

Anantapuramu and CMRCET for providing facilities to 

carry out this research work. They would also like to thank 

all the experts from different software companies who 

participated in the evaluation of this SPL configuration 

management prototype.

References

[1]. Schmidt, D. C.  Design Patterns to Develop Object-

Oriented Communication Software Frameworks and 

Applications, (n.d), pp.1-16.

[2]. Blaimer, N., Bortfeldt, A. and Pankratz, G. (2010). 

Patterns in Object-Oriented Analysis. fern universittat in 

hagen. (n.d), pp.1-80.

[3]. McDonald, J., Design Patterns. Dzone. (n.d), pp.1-7.

[4]. Gamma, E., Helm, R. Johnson, R., and Vlissides, J. 

(1994). Design patterns: Elements of Reusable Object-

Oriented Software. Boston, MA, USA: Addison-Wesley 

Longman Publishing Co., Inc.

[5]. Becker, M. (2003). “Towards a General Model of 

Variability in Product Families”. System Software Group, 

University of Kaiserslautern, pp.859-876.

[6]. Parra, C., Blanc, X., Cleve, A., and Duchiena, L. 

(2011). “Unifying design and runtime software adaptation 

using aspect models”. Elsevier. Vol.76 , pp.32-44.

[7]. Tizzei, L. P., Dias, M., Rubira, C. M. F., Garcia, A., and 

Lee, J. (2011). “Components meet aspects: Assessing 

design stability of a software product line”. Elsevier. Vol.53, 

pp.25-34.

[8]. Fortier, A., Rossi, G., Gordillo, S. E., and Challiol, C. 

(2010). “Dealing with variability in context-aware mobile 

software”. Elsevier. Vol.83, pp.737-772.

[9]. Hammouda, I., Hautamaki, J., Pussinen, M., and 

Koskimies, M. (2005). “Managing Variability Using 

Heterogeneous Feature Variation Patterns”. Springer-

Verlag, Berlin, Heidelberg, pp.977-1000.

[10]. Alves, V., Schneider, D., and Becker, M. (2009). 

“Comparitive Study of Variability Management in Software 

Product Lines and Runtime Adaptable Systems”. ACM, 

pp.4212-4233.

[11]. Schuster, S. (2014). Pattern-Based Software Product 

Line Design using Role Modeling. pp.1-136.

[12]. K.L.S. Soujanya and A. Ananda Rao, (2015). A 

“Generic Framework for Configuration Management of 

SPL and Controlling Evolution of Complex Software 

Products”. ACM SIGSOFT Software Enginering Notes, 

Vol.41, No.1, January 2016.

[13]. Jilles Van Gurp, Jan Hosch, and Mikael Svahnberg 

(n.d). Managing Variability in Software Product Lines. 

Retrieved from http://www.jillesvangurp.com/static/ 

managingvariabilityinSPLs.pdf

[14]. D. Riehle, (1997). “A role-based design pattern 

catalog of atomic and composite patterns structured by 

pattern purpose”. Tech. rep. Ubilab Technical Report 

97.1. 1. Zürich, Switzerland: Union Bank of Switzerland.

ABOUT THE AUTHORS

K.L.S. Soujanya is an Associate Professor in the Department of Computer Science Engineering at CMRCET, JNTUH, Telangana, 
India. She received her B.E Degree from Osmania University, Hyderabad, Telangana, India and M.Tech Degree in CSE from JNTU 
College of Engineering, Anantapuramu, Andhra Pradesh, India. She is currently pursuing her Ph.D at JNTUA, Anatapuramu, 
Andhra Pradesh, India. She has also attended various Conferences at IIIT Hyderabad, IIT Chennai, Infosys Mysore and workshops 
at JNTUA, JNTUH. Her research areas include Software Engineering, Cloud Computing and Data Mining.

Dr. Ananda Rao Akepogu received his B.Tech Degree in Computer Science and Engineering from University of Hyderabad, 
Andhra Pradesh, India and M.Tech Degree in A.I & Robotics from University of Hyderabad, Andhra Pradesh, India. He received his 
Ph.D Degree from Indian Institute of Technology Madras, Chennai, India. He is a Professor of the Department of Computer 
Science and Engineering and currently working as Director of industrial relations and placements at JNTUA College of 
Engineering, Anantapur, Jawaharlal Nehru Technological University, Andhra Pradesh, India. Dr. Rao has published more than 100 
publications in various National and International Journals/Conferences. He received Best Research Paper award for the paper 
titled “An Approach to Test Case Design for Cost Effective Software Testing” in an International Conference on Software 
Engineering held at Hong Kong, 18-20 March 2009. He also received Best Educationist Award, Bharat Vidya Shiromani Award, 
Rashtriya Vidya Gaurav Gold Medal Award, Best Computer Teacher Award and Best Teacher Award from the Andhra Pradesh 
Chief Minister for the year 2014. His main research interest includes Software Engineering and Data Mining.

i-manager’s Journal o  Software  l ln Engineering, Vol. 10  No. 3  January - March 2016


	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

