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ABSTRACT

The operation of an electric power system is a complex one due to its nonlinear and computational difficulties. One task 

of operating a power system economically and securely is optimal scheduling, commonly referred to as the Optimal 

Power Flow (OPF) problem. It optimizes a certain objective function while satisfying a set of physical and operating 

constraints. Optimal power flow has become an essential tool in power system planning and operation. In this paper, a 

gravitational search algorithm is presented to solve OPF problems while satisfying system equality, in-equality constraints. 

The effect of security limits such as transmission line limits and load bus voltage magnitudes is also analyzed on OPF 

problem. The developed methodology is tested on the standard IEEE-30 bus test system, supporting numerical as well as 

graphical results.
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Programming (NLP) [1, 4-10, 11-13], Quadratic 

Programming (QP) [6,7], Linear Programming (LP) [14, 15], 

Newton-based techniques [8, 9], and sequential 

unconstrained minimization technique [10]. Generally, NLP 

based procedures have many drawbacks such as insecure 

convergence properties and algorithmic complexity.

Another evolutionary computation technique called 

Particle Swarm Optimization (PSO), has been proposed 

and introduced [16-19]. This technique combines social 

psychological principles in socio-cognition human 

agents and evolutionary computations. PSO has been 

motivated by the behavior of organisms such as fish 

schooling and bird flocking. Generally, PSO is 

characterized as simple in concept, easy to implement 

and computationally efficient. Unlike, the other heuristic 

techniques, PSO has a flexible and well-balanced 

mechanism to enhance and adapt to the global and 

local exploration abilities.

In this paper, the PSO and GSA (Gravitational Search 

Algorithm) based algorithms for solving OPF problems, 

with generation fuel cost as objective, is presented. The 

effect of security constraints on OPF problem is 

investigated by considering security limits. The proposed 

INTRODUCTION

For secure operation of the system without any limit 

violation, complete modeling of the system through load 

flow equations and operational constraints is necessary. 

Thus the Optimal Power Flow (OPF) is a good choice. The 

solution of formulated Optimal Power Flow (OPF) model 

gives the optimal operating state of a power system and 

the corresponding settings of control variables for 

economic and secure operation, while at the same time 

satisfying various equality and inequality constraints. The 

equality constraints are the power flow equations, while 

the inequality constraints are the limits on control variables 

and the operating limits of power system dependent 

variables. Amongst a number of different operational 

objectives that an OPF problem may be formulated, a 

widely considered objective is to minimize the fuel cost 

subject to equality and inequality constraints.

The goal of optimal power flow is to determine optimal 

control variables and quantities for efficient power system 

planning and operation. Several optimization techniques 

have been proposed to handle the OPF problem [1-3]. A 

wide variety of optimization techniques have been 

applied to solve the OPF problems such as Nonlinear 
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T   u  = [P ,..., P , V ,..., V , Q ,..., Q , T ,..., T ] (3)G2 GNG G1 GNG C1 Cnc 1 NT

'NT' and 'nc' are the number of tap controlling transformers 

and shunt compensators.

2. Quadratic Fuel Cost

The main aim of OPF problem is to optimize the total 

generation fuel cost in a system. Generators for which fuel 

cost characteristics are given by,

2                   A  =   (aP  + bP  + c); $/h (4)1 i Gi i Gi i

thwhere, a, b, c are the fuel cost coefficients of i  unit. P  is i i i Gi

ththe active power generation of i  unit.

3. Constraints

Constraints made in this OPF problem are usually two 

types. They are equality constraints and inequality 

constraints.

3.1 Equality Constraints

These constraints mentioned in Equation (2) are usually 

load flow equations described as,

P  - P  -   V  V  Y  cos(  -  + ) = 0 (5)G,k d,k k m km km k m

Q  - Q  -   V  V  Y  sin(  -  + ) = 0 (6)G,k d,k k m km km k m

where, P , Q  are the active and reactive power G,k G,k

thgeneration at the k  bus, P , Q  are the active and dk dk

threactive power demands at the k  bus, V  V  are the k m

th thvoltage magnitudes at the k  and m  buses, ,  are the k m

th thphase angles of the voltage at the k  and m  buses, and 

Y ,  are the bus admittance magnitude and its angle km km

th thbetween the k  and m  buses.

3.2 Inequality Constraints

These are the constraints that represents the system 

operation and security limits which are continuous and 

discrete constraints.

Generator bus voltage limits:

(7)

Active power generation limits:

(8)

Transformers tap setting limits:

(9)

Capacitor reactive power generation limits:

(10)

S

S|||||| qdd

S|||||| qdd

||||

dd

||q

approach has been tested on the Standard IEEE-30 bus 

system. The potential and effectiveness of the proposed 

approach are demonstrated.

1. OPF Problem Formulation

The aim of the Optimal Power Flow solution is to optimize the 

selective objective function through proper adjustment of 

control variables by satisfying various constraints. The OPF 

problem can be represented as follows:

         Min [A (x,u)] (1)m

Subjected to g(x,u) = 0 and

h   h(x,u)  hmin max

where,

A (x,u) is the function which is to be minimized,m

g(x,u), h(x,u) represents equality and inequality constraints,

‘x' and 'u' are dependent and independent variables.

Optimal power flow solution gives an optimal control 

variable leads to the minimum generation fuel cost, 

emission and total power loss, etc. subjected to all the 

various equality and inequality constraints. Here, the 

vector 'x' consists of slack bus real power output (P ), G1

generator VAr output (Q ), load bus voltage magnitude G

(V ), and line flow limits (S ).L l

Thus 'x' can be written as,

T      x  = [P ,V ,...,V , Q ,..., Q , S ,...,S ] (2)G1 L1 LNL G1 GNG l1 lnl

where,

NL = Number of load buses,

NG = Number of generator buses,

nl = Number of lines,

u = the independent variable vector such as continuous 

and discrete variables that consists of,

Generator active output 'P '  at all generators without G

slack bus,

Generator voltages V ,G

Tap settings of transformer 'T’,

Shunt VAr compensation (or) reactive power injections 

Q .C

Here P , V  are continuous variables and T and Q  are the G G C

discrete variables. Hence 'u' can be expressed as,

££

·

·

·

·
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4.1 PSO Operation

PSO is initialized with a group of random particles 

(solutions) and then searches for optima by updating 

generations, the particles are "flown" through the problem 

space by following the current optimum particles. Each 

particle keeps track of its coordinates in the problem 

space, which are associated with the best solution (fitness) 

that it has achieved so far. This implies that each particle 

has a memory, which allows it to remember the best 

position on the feasible search space that it has ever 

visited. This value is commonly called p . Another best best

value that is tracked by the particle swarm optimizer is the 

best value obtained so far by any particle in the 

neighborhood of the particle. This location is commonly 

called g . The basic concept behind the PSO technique best

consists of changing the velocity (or accelerating) of 

each particle toward it's p  and the g  positions at each best best

time step. This means that each particle tries to modify its 

current position and velocity according to the distance 

between its current position and p , and the distance best

between its current position and g .best

PSO, simulation of bird flocking in two-dimension space 

can be explained as follows. The position of each agent is 

represented by XY-axis position and the velocity is 

expressed by V  (the velocity of X-axis) and V  (the velocity x y

of Y-axis). Modification of the agent position is realized by 

the position and velocity information. PSO procedures 

based on the above concept can be described as 

follows. Bird flocking optimizes a certain objective 

function. Each agent knows its best value so far (p ) and best

its XY position. Moreover, each agent knows the best value 

in the group (g ) among p . Each agent tries to modify best best

its position using the current velocity and the distance 

from p and g . The modification can be represented best best

by the concept of velocity. The new velocity and updated 

positions are calculated using the following expressions,

(16)

(17)

where, '    ' and '      ' are the present position and velocities 
th th thof i  particle in j  dimension in k  iteration. These new 

velocities and updated positions are calculated 

Transmission line flow limit:

(11)

Reactive power generation limits:

(12)

Load bus voltage magnitude limits:

(13)

The control variables in this problem are self-constrained, 

whereas the in-equality constraints such as P , V , Q , and  Gi i Gi

S  are non-self-constrained by nature. Hence, these li

inequalities are incorporated into the objective function 

using a penalty approach [8]. The augmented function 

can be formulated as:

(14)

where, R , R , R  and R  are the penalty quotients, which 1 2 3 4

take large positive values. The limit values of the 
limdependent variable x  can be given as:

(15)

limwhere, x  can be P , V , QG1 i Gi

4. Particle Swarm Optimization (Existing)

Particle Swarm Optimization (PSO) is a population based 

stochastic optimization technique developed by Dr. 

Eberhart and Dr. Kennedy in 1995, inspired by social 

behavior of bird flocking or fish schooling [20].

PSO shares many similarities with evolutionary computation 

techniques such as Genetic Algorithms (GA). The system is 

initialized with a population of random solutions and 

searches for optima by updating generations. However, 

unlike GA, PSO has no evolution operators such as crossover 

and mutation. In PSO, the potential solutions, called 

particles, fly through the problem space by following the 

current optimum particles.

PSO has been successfully applied in many research and 

application areas. It is demonstrated that, PSO gives 

better results in a faster, cheaper way compared with 

other methods [21].

li-manager’s Journal o  , Vol.  No. 4 l n  3 Power Systems Engineering November 2015 - January 2016
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more slowly than lighter ones, this guarantees the 

exploitation step of the algorithm.

In GSA, each mass (agent) has four specifications: 

position, inertial mass, active gravitational mass, and 

passive gravitational mass. The position of the mass 

corresponds to a solution of the problem, and its 

gravitational and inertial masses are determined by using 

a fitness function.

In other words, each mass presents a solution, and the 

algorithm is navigated by properly adjusting the 

gravitational and inertia masses. By lapse of time, we 

expect that the masses be attracted by the heaviest 

mass. This mass will present an optimum solution in the 

search space.

The GSA could be considered as an isolated system of 

masses. It is like a small artificial world of masses obeying 

the Newtonian laws of gravitation and motion. More 

precisely, masses obey the following laws:

Law of Gravity

Each particle attracts every other particle and the 

gravitational force between two particles is directly 

proportional to the product of their masses and inversely 

proportional to the distance between them, R. The authors 
2use R instead of R  because according to the experiment 

2results, R provides better results than R  in all experimental 

cases.

Law of Motion

The current velocity of any mass is equal to the sum of the 

fraction of its previous velocity and the variation in the 

velocity. Variation in the velocity or acceleration of any 

mass is equal to the force acted on the system divided by 

mass of inertia.

The gravitational constant, G, is initialized at the beginning 

and will be reduced with time to control the search 

accuracy. In other words, G is a function of the initial value 

(G ) and time (t):0

(19)

where, α is a constant, t  is the iteration number and 'T' is the i

total number of iterations.

thConsider a system of N agents. The position of i  agent is 

repeatedly for a pre-defined number of iterations reached. 

For minimization of the objective functions, the fitness 

function is evaluated using the following expression, 

                     Fitness = (18)

Expressions (16) and (17) describe the velocity and 

position update, respectively. Expression (16) calculates a 

new velocity for each particle based on the particle's 

previous velocity, the particle's location at which the best 

fitness has been achieved so far, and the population 

global location at which the best fitness has been 

achieved so far. Usually C =C =2.1 2

4.2 Flow Chart of PSO

The complete procedure of PSO is shown in Figure 1.

5. Gravitational Search Algorithm (Proposed)

In this section, the developed algorithm is based on the 

law of gravity. In the proposed algorithm, agents are 

considered as objects and their performance is 

measured by their masses. All these objects attract each 

other by the gravity force, and this force causes a global 

movement of all objects towards the objects with heavier 

masses. Hence, masses co-operate using a direct form of 

communication, through gravitational force. The heavy 

masses – which correspond to good solutions – move 

i-manager’s Journal o  n l l Power Systems Engineering, Vol. 3  No. 4 November 2015 - January 2016

Figure 1. Flow Chart of Existing PSO
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thrandomly weighted sum of d  components of the forces 

exerted from other agents:

(30)

One way to perform a good compromise between 

exploration and exploitation is to reduce the number of 

agents with lapse of time. Hence, the authors propose 

only a set of agents with bigger mass apply their force to 

the other. However, we should be careful of using this 

policy because it may reduce the exploration power and 

increase the exploitation capability.

The authors remind that, in order to avoid trapping in a 

local optimum, the algorithm must use the exploration at 

beginning. By lapse of iterations, exploration must fade 

out and exploitation must fade in. To improve the 

performance of GSA by controlling exploration and 

exploitation only the K  agents will attract the others. K  best best

is a function of time, with the initial value K  at the 0

beginning and decreasing with time. In such a way, at the 

beginning, all agents apply the force, and as time passes, 

K  is decreased linearly and at the end there will be just best

one agent applying force to the others.

Therefore, equation (30) can be modified as:

(31)

where, K  is the set of first K agents with the best fitness best

value and biggest mass given by,

(32)

where, final  is the percentage of particles that remain at per

the end (generally 2). Since M is a function of m, which is 

function fitness, in every iteration, one value of m is zero. 

Hence, M is zero at this value of m. At this value of M, 

acceleration becomes an indefinite value from above 

equations. To obtain integer value of K , it is rounded in best

terms of population. Hence, we introduce another 

variable E which is defined as follows:

(33)

(34)

5.3 Calculation of Acceleration

Hence, by the law of motion, the acceleration of the 

agent  'i' at iteration t , and in direction d, is given as:

defined as,

(20)

For each position, fitness function is evaluated.

5.1 Calculation of Masses

th thLet, fit (t) be the fitness function of i  particle at t  iteration.i

Now, the authors introduce new variables worst (t) and 

best (t).

For a minimization problem, best (t) and worst (t) are 

defined as follows:

(21)

(22)

For a maximization problem, best (t) and worst (t) are 

defined as follows:

(23)

(24)

Gravitational and inertia masses are simply calculated by 

the fitness evaluation. A heavier mass means a more 

efficient agent. This means that, better agents have 

higher attractions and walk more slowly. Assuming, the 

equality of the gravitational and inertia mass, the values of 

masses are calculated using the map of fitness. The 

gravitational and inertial masses are updated by the 

following equations:

(25)

(26)

(27)

5.2 Calculation of Force

For iteration t, the force acting on mass i from mass j is 

defined as the following,

(28)

where, M , M  are the active and passive gravitational aj pi

masses related to agent j, G(t) is gravitational constant at 

iteration t, ε is a small constant and R  is the Euclidian ij

distance between two agents i and j given by,

(29)

To give a stochastic characteristic to the algorithm, the 

total force that acts on agent i in a dimension d be a 

li-manager’s Journal o  , Vol.  No. 4 l n  3 Power Systems Engineering November 2015 - January 2016
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computer with Intel Core2Duo 1.18 GHz processor and 2 

GB RAM. The input parameters of the existing PSO method 

and the proposed GSA method for the considered test 

system are given in Table 1.

This section presents the details of the study carried out on 

the Standard IEEE-30 bus test system to analyze OPF 

problem. The network and load data for this system is 

taken from [1]. In the Standard IEEE-30 bus system consist 

of 41 branches, six generator buses and 21 load buses. 

Four branches 6-9, 6-10, 4-12 and 27-28 have tap 

changing transformers. The buses with possible reactive 

power source installations are 10 and 24.

The effectiveness of SCOPF (Security Constrained Optimal 

Power Flow) over OPF is verified using existing PSO and 

proposed GSA. The respective results are tabulated in 

Table 2. From this table, it is observed that, less generation 

fuel cost is obtained with the proposed GSA when 

compared to the existing PSO algorithm in OPF and 

SCOPF problems.

Using the proposed GSA, the total generation and there 

by the total transmission power losses are decreased. It is 

also observed that, because of the increased number of 

constraints in SCOPF, the generation fuel cost is increased 

when compared to OPF. In OPF problem, using the 

proposed GSA, the generation fuel cost in decreased by 

0.4107 $/h and whereas in SCOPF problem, the 

generation fuel cost is decreased by 0.6916 $/h.

The convergence characteristics for the OPF and SCOPF 

problems using the existing and proposed methods are 

shown in Figures 3 and 4. From these Figures 3 and 4, it is 

(35)

Furthermore, the next velocity of an agent is considered 

as a fraction of its current velocity added to its 

acceleration. Therefore, its position and its velocity could 

be calculated as follows:

(36)

(37)

5.4 Step by Step Procedure of GSA

The different steps of the proposed algorithm are 

following.

Search space identification.

Randomized initialization.

Fitness evaluation of agents.

Update G(t), best(t), worst(t) and M(t) for i = 1,2,…,N.i

Calculation of the total force in different directions.

Calculation of acceleration and velocity.

Updating agents' position.

Repeat steps 3 to 7 until the stop criteria is reached.

End.

5.5 Flow Chart of GSA

The complete procedure of GSA is shown in Figure 2.

6. Results and Analysis

In order to demonstrate the effectiveness and robustness 

of the proposed GSA method, the Standard IEEE 30 bus 

system is considered. The existing and proposed 

methodologies are implemented on a personal 

·

·

·

·

·

·

·

·

·

i-manager’s Journal o  n l l Power Systems Engineering, Vol. 3  No. 4 November 2015 - January 2016

Figure 2. Flow Chart of GSA

S.No Method Parameters Quantity

1 PSO
method

Population size 5

Number of generations 100

Initial weight function, maxw 0.9

Final weight function, minw 0.4

Acceleration coefficients c  and c1 2 2

2 GSA
method

Population 50

Maximum iterations 100

Initial gravitational constant (G )0 100

Decay constant (a) 5/10

Constant (e) -128.854x10

Percentage of number of particles in final iteration 2

Rnorm 2

Table 1. Input Parameters for Test System
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of constraints in SCOPF problem, the convergence starts 

with higher generation fuel cost value when compared to 

that of OPF problem.

The voltage magnitudes at buses in OPF and SCOPF 

problems are tabulated in Table 3. Similarly, the variation 

observed that, in both of the problems, the proposed GSA 

algorithm starts the iterative process with better initial 

value and converges to a best value in less number of 

iterations when compared to the existing PSO algorithm. It 

is also identified that, because of the increased number 

li-manager’s Journal o  , Vol.  No. 4 l n  3 Power Systems Engineering November 2015 - January 2016

S.No

OPF SCOPF

Existing PSO Proposed GSA Existing PSO Proposed GSA

1

PG1 176.689 174.3426 176.382 175.9074

PG2 48.3217 49.64299 48.2966 49.51213

PG5 21.3454 21.8549 21.3100 21.21016

PG8 23.1939 21.79141 22.8044 20.91668

PG11 11.4869 13.14502 12.3677 13.07669

PG13 12 12 12 12.35759

2

VG1 1.05 1.05 1.05 1.05

VG2 1.03381 1.039274 0.94015 1.035991

VG5 1.01015 1.012427 1.01053 1.010529

VG8 1.01274 1.019376 1.04743 1.018665

VG11 1.01537 1.05 1.01463 1.007666

VG13 1.04928 1.05 1.05 1.05

3

T6-9 0.96095 1.002329 0.96522 0.988997

T6-10 0.94748 0.999802 1.03427 0.966031

T4-12 1.01572 0.989838 1.02057 1.027439

T28-27 0.94073 0.974107 0.98408 0.978148

4
QC,10 10.1511 22.4211 23.8126 10.91058

QC,24 16.0914 13.46823 13.0653 13.20759

5 Total generation (MW) 293.037 292.7769 293.161 292.9806

6 Quadratic fuel cost ($/h) 802.925 802.5149 803.441 802.7499

7 Total power losses (MW) 9.63776 9.376908 9.76158 9.58063

Control Parameters

Real power Generation
(MW)

Generator voltages (p.u.)

Transformer tap
setting (p.u.)

Shunt compensators
(MVAr)

Table 2. OPF and SCOPF Results of Generation Fuel Cost for Standard IEEE-30 Bus System

Figure 3. Convergence Characteristics of OPF
with Quadratic Cost for IEEE-30 Bus System

Figure 4. Convergence Characteristics of SCOPF
with Quadratic Cost for IEEE-30 Bus System
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shown in Figures 7 and 8. From Figure 7, it is observed that, 

because of solving OPF problem without security 

constraints, the power flow in some of the lines is operating 

nearer to the maximum MVA limit. From Figure 8, it is 

observed that, because of SCOPF, the power flow in all 

lines is within limits. In this problem, the power flow in some 

of the lines is reduced with the proposed GSA when 

compared to the existing algorithm.

To support the effectiveness of the proposed method, 

obtained results are compared with the existing 

literature methods. The comparison results is given in 

Table 5. From this table, it is identified that, the proposed 

method yields good results when compared to the 

of voltage magnitudes in OPF and SCOPF problems using 

the existing and proposed methods is shown in Figures 5 

and 6. From Figure 5, it is observed that, because of 

solving OPF problem without security limits, voltage 

magnitude deviations are high at some of buses and 

majority of buses are operating nearer to maximum 

voltage limit. From Figure 6, it is observed that, because of 

SCOPF problem, the voltage magnitude at buses is within 

its voltage limits. It is also observed that, in both of the 

problems, with the proposed GSA, the voltage magnitude 

at buses is enhanced when compared to the existing PSO 

algorithm.

Similarly, the transmission line power flows in OPF and 

SCOPF problems using existing and proposed methods 

are tabulated in Table 4 and the respective variation is 

i-manager’s Journal o  n l l Power Systems Engineering, Vol. 3  No. 4 November 2015 - January 2016

Table 3. Voltage Magnitudes of OPF and SCOPF
with Quadratic Cost for IEEE-30 Bus System

Bus No

OPF SCOPF

PSO GSA PSO GSA

1 1.05 1.05 1.05 1.05

2 1.0338099 1.0392735 1.03599084 1.0252456

3 1.023003 1.0276981 1.02658537 1.0279858

4 1.0163374 1.0220096 1.02066874 1.0223658

5 1.0101587 1.0124268 1.01052911 1.011053

6 1.0085361 1.0190805 1.0141517 1.0197274

7 1.0013885 1.0086115 1.0048899 1.0084307

8 1.0127406 1.0193756 1.01866452 1.0298365

9 1.0279167 1.0304091 1.01277126 1.0278281

10 1.0241939 1.0283828 1.00990145 1.0208056

11 1.0153761 1.05 1.00766592 1.0146308

12 1.0217949 1.0309191 1.0156231 1.0207211

13 1.0492814 1.05 1.05 1.05

14 1.0103291 1.0182547 1.00242241 1.0082015

15 1.0092109 1.0158622 0.99974737 1.0060747

16 1.0153909 1.0224689 1.00573499 1.0133121

17 1.0160827 1.0211697 1.00312949 1.0130711

18 1.0020398 1.007892 0.99072919 0.9987695

19 1.0010064 1.0063673 0.98863678 0.9976692

20 1.0060003 1.0110722 0.99314235 1.002646

21 1.0154761 1.0183278 0.99999601 1.0104518

22 1.0172498 1.0196641 1.00146326 1.0117288

23 1.0106095 1.0130431 0.99655693 1.0036236

24 1.0211206 1.0178873 1.00103812 1.0090372

25 1.0280064 1.0158606 1.00184443 1.0073429

26 1.0105196 0.9981566 0.98388279 0.9894833

27 1.04074 1.0231726 1.01104984 1.0149381

28 1.0045315 1.0154692 1.01106194 1.0183262

29 1.0212698 1.003332 0.99094491 0.9949187

30 1.0100071 0.9918565 0.97931759 0.9833405

Figure 5. Variation of Voltage Magnitudes of OPF
with Quadratic Cost for IEEE-30 Bus System

Figure 6. Variation of Voltage Magnitudes of SCOPF
with Quadratic Cost for IEEE-30 Bus System
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Conclusion

In this paper, to show the effect of security constraints on 

OPF problem which has been demonstrated by 

performing OPF and SCOPF problems by considering 

generation fuel cost as objective. To solve this problem, 

Gravitational Search Algorithm (GSA) is proposed. The 

effectiveness of the proposed algorithm is compared 

with the existing Particle Swarm Optimization (PSO). The 

effect of security constraints on voltage magnitudes 

and line power flows has been analyzed. The complete 

methodology has been tested on the standard IEEE-30 

existing methods.

From the above analysis, it has been concluded that, 

because of including security constraints in SCOPF 

problem, this problem is more efficient when compared 

to OPF problem. From this, it is assumed that, further 

analysis is performed using SCOPF only.

li-manager’s Journal o  , Vol.  No. 4 l n  3 Power Systems Engineering November 2015 - January 2016

Table 4. Power Flows of OPF and SCOPF with
Quadratic Cost for IEEE-30 Bus System

Figure 7. Variation of Power Flows of OPF with
Quadratic Cost for IEEE-30 Bus System

Figure 8. Variation of Power Flows of SCOPF with
Quadratic Cost for IEEE-30 Bus System

Table 5. Validation of SCOPF results of quadratic
cost for IEEE-30 bus system

S.No Method Quadratic cost ($/h)

1 EP [22] 802.9070

2 TS/SA [23] 802.7880

3 ITS [24] 804.5560

4 GA [25] 803.0500

5 Proposed GSA 802.7499

Line
No

OPF SCOPF

PSO GSA PSO GSA

1 118.58923 117.66726 117.59952 118.04218 130

2 58.465331 58.106942 58.97925 58.547977 130
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8 15.435622 12.888982 12.729458 13.850837 70

9 34.134329 34.193146 34.579622 34.234051 130

10 16.553976 11.508245 29.567665 18.656065 32

11 22.489145 19.504944 24.741637 19.423453 65

12 15.95031 13.131913 14.138645 15.611208 32

13 13.115116 16.241415 14.053543 13.344512 65

14 31.206987 31.677095 32.882916 31.512531 65

15 30.553153 30.989444 31.159019 31.158701 65

16 23.295615 18.406835 24.406593 27.742596 65

17 7.4372823 7.7335177 7.6582792 7.751248 32

18 16.962592 17.770038 17.533633 17.72761 32
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35 6.8520487 4.9731364 5.0359842 5.4021057 16

36 21.03537 19.052656 19.141018 19.569332 65

37 6.4046256 6.4110887 6.4142476 6.4157692 16

38 7.2766468 7.2844887 7.2883219 7.2901684 16

39 3.7512091 3.7529791 3.7538444 3.7542613 16

40 3.1553816 2.6858103 3.9070057 2.6144364 32

41 16.601932 15.780857 15.774988 16.029469 32

MVA
Limit
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