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DIABETIC RETINOPATHY GRADE
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ABSTRACT

Diabetic Retinopathy (DR), a common diabetes-related disorder, is a leading driver of blindness worldwide. Quick 

detection and precise staging are essential for effective management and vision preservation. This study explores the 

Swin Transformer, an advanced deep learning framework with a multi-layered setup and a unique sliding window 

method, to create an automated tool for DR stage assessment. Utilizing the APTOS 2019 Blindness Detection dataset, the 

system accurately identifies small retinal signs like microaneurysms and more pronounced features such as 

hemorrhages, achieving high precision. Improved preprocessing, including image enrichment and calibration, 

enhances its versatility. Results indicate that this approach outperforms traditional Convolutional Neural Networks (CNNs) 

in precision, computational thrift, and growth potential, with a test accuracy of 99.57% and a test loss of 0.0220.
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INTRODUCTION

The global increase in diabetes has spotlighted Diabetic 

Retinopathy (DR) as a major health threat, capable of 

causing blindness if not addressed early (World Health 

Organization, 2025). This condition results from harm to 

the retina's blood vessels due to prolonged high glucose 

levels, requiring swift intervention to prevent significant 

vision deterioration. Figure 1 shows an image of the 

normal retina and the effects of diabetes on the retina, 

highlighting the progressive damage that occurs with 

disease advancement. Current diagnostic methods 

typically involve expert ophthalmologists examining 

retinal photographs, a practice that, while accurate, is 

resource-heavy and time-consuming. In regions lacking 

such specialists, diagnosis delays amplify the risk of 

disease worsening, and discrepancies in human analysis 

can lead to uneven results (Coan et al., 2023). These 

issues emphasize the pressing need for automated, 

reliable diagnostic alternatives. Table 1 shows the severity 

levels of Diabetic Retinopathy and associated retinal 

lesions, outlining how the disease progresses from mild 

symptoms to severe complications, including 

neovascularization and significant hemorrhages.
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Figure 1. Image of the Normal Retina and 
the Effects of Diabetes on the Retina
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microaneurysms and exudates. This study taps into its 

strengths to address the urgent call for effective, scalable 

DR screening solutions.

1. System Model

Automating DR stage evaluation marks a leap forward in 

medical diagnostics, cutting reliance on slow manual 

reviews and promoting consistent, rapid decisions. The 

Vision Transformer (ViT) pioneered this shift by adapting 

language-processing transformers for image tasks, 

offering scalability and strong local feature learning 

beyond CNN limitations (Dosovitskiy et al., 2020). The Swin 

Transformer enhances this with its sliding window 

innovation, structuring images in a tiered manner across 

linked processing units (Liu et al., 2021). This design excels 

in applications like image categorization, object spotting, 

and area segmentation (Hatamizadeh et al., 2021; Xu et 

al., 2021).

Unlike ViT's resource-heavy O (N²) complexity, the Swin 

Transformer uses a leaner O(M * N) model with non- 

overlapping window calculations, merging patches to 

form multi-scale image views (Liu et al., 2021). This 

adaptability suits retinal scans with diverse feature sizes. Its 

window-sliding process shifts positions between layers, 

boos t i ng  spa t i a l  connec t i v i t y  and con te x t  

comprehension compared to fixed-window methods. 

Figure 2 shows an illustration of the Swin transformer's 

architecture.

Four essential steps make up the Swin Transformer 

architecture, which is intended to handle and display 

image data in a hierarchical fashion. The model can 

Innovations in deep learning (DL) and machine learning 

(ML) have transformed healthcare by enabling fast, 

dependable analysis of complex datasets (Beam & 

Kohane, 2018; Gulshan et al., 2016; Topol, 2019). These 

systems leverage vast data to detect subtle patterns, 

refine diagnostic accuracy, optimize treatment plans, 

and personalize patient care. Their capacity to process 

extensive information makes them highly promising for 

automating DR detection. Among various DL models, the 

Swin Transformer stands out for its superior accuracy and 

efficiency in medical image processing, thanks to its 

layered feature extraction and adaptive window 

technique (Liu et al., 2021). This research employs the Swin 

Transformer to tackle the demand for robust, scalable DR 

screening tools, capturing both minute details (such as 

microaneurysms) and larger anomalies (such as 

hemorrhages) more effectively than CNNs, which focus 

mainly on local patterns.

The Swin Transformer, distinguished by its tiered design 

and innovative window-shifting method, excels in this 

domain. Unlike CNNs, which prioritize localized features, it 

captures both detailed and comprehensive retinal traits, 

facilitating the identification of early markers like 

DR Severity

No DR

Mild

Moderate

Severe

Proliferative DR

Level Lesions

No observable retinal damage.

Limited to microaneurysms.

Lesions beyond mild but short of severe.

Over 20 hemorrhages per retinal quadrant.

Features neovascularization or significant hemorrhages.

Table 1. Severity Levels of Diabetic Retinopathy 
and Associated Retinal Lesions

Figure 2. Architecture of Swin Transformer
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transformation into a higher-dimensional space through 

a linear embedding process, akin to applying a 

convolutional layer that maps 48 channels to 96 channels 

(Goodfellow et al., 2016). This step prepares the data for 

deeper analysis by enhancing its representational 

capacity. By utilizing convolution operations and kernel 

functions, the patch partitioning and linear embedding 

procedures together achieve patch embedding, much 

like convolutional neural networks (O'Shea & Nash, 2015).

1.3 Swin Transformer Block

At the heart of the model lies the Swin Transformer block, 

which replaces traditional multi-head self-attention with a 

window-based approach. Figure 5 shows the Swin 

transformer blocks, highlighting the architecture's 

hierarchical structure and local-to-global feature 

extraction mechanism. It employs two sub-modules: 

window-based multi-head self-attention (W-MSA) for 

localized processing and shifted-window multi-head self- 

attention (SW-MSA) for cross-window connectivity (Topol, 

2019. These are followed by a multi-layer perceptron 

(MLP) with GELU nonlinearity, preceded by layer 

normalization, enabling the model to discern long-range 

dependencies within the image efficiently (Vaswani et al., 

2017).

After linear embedding, the first set of patch tokens, 

contain both local details and global context thanks to 

these stages that build upon one another (Liu et al., 2021).

1.1 Patch Partitioning

The initial step involves segmenting the input image into 

smaller, manageable units, typically 4x4 pixel patches. 

Figure 3 shows a patch partition, where the image is 

divided into uniform segments to enable localized 

feature extraction. Each patch, comprising 16 pixels with 

three RGB color channels, is flattened into a 48-channel 

vector representation, reducing the dimensionality of the 

data for subsequent processing. Figure 4 shows an image 

resulting from the patch partition, illustrating how the 

original input is transformed into a grid of encoded units. 

This technique lowers the dimensionality of the input data, 

which makes further processing easier (Brownlee, 2019).

The input image is efficiently divided into smaller areas, 

usually four by four pixels, after patch partitioning (Topol, 

2019). This division simplifies the creation of debug 

symbols by converting the picture size to (W/4, H/4, × 

channel), which changes to (W/4, H/4, × 3) when patch 

partitioning is finished. The analysis and manipulation of 

the image data are made easier by this process.

1.2 Linear Embedding

Following patch division, these segments undergo a 

Figure 3. Patch Partition

Figure 4. Image from Patch Partition Figure 5. Swin Transformer Blocks
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APTOS 2019 Blindness Detection dataset, a widely 

recognized benchmark sourced from Kaggle and 

developed by the Asia Pacific Tele-Ophthalmology 

Society (Chen et al., 2018). The dataset comprises 3,662 

retinal fundus photographs captured under a variety of 

imaging conditions, reflecting real-world diversity. Each 

image has been meticulously categorized by experts into 

one of five DR severity levels: No DR (Class 0), Mild (Class 

1), Moderate (Class 2), Severe (Class 3), and Proliferative 

(Class 4). The distribution of images across these 

categories highlights the dataset's imbalance, with a 

significant concentration in the No DR class, posing a 

challenge that the model must address. The distribution of 

retinal images across each severity level within the 

dataset is shown in Table 2.

2.1 Implementation Details

The Swin Transformer was selected as the backbone of this 

system due to its proven efficiency in handling memory-

intensive tasks and its flexibility in adapting to diverse 

image analysis challenges (Dosovitskiy et al., 2020). Input 

images were pre-processed to a uniform resolution of 

either 224x224 pixels or 160x160 pixels, ensuring 

referred known as Stage 1, has dimensions of (W/4, H/4, 

C). Each following stage's dimensions change when 

fewer 2x2 patch tokens are produced: Stage 2 measures 

(W/8, H/8, 2C), Stage 3 measures (W/16, H/16, 4C), and 

Stage 4 measures (W/32, H/32, 8C).

The mathematical formulations for Window-based Multi- 

scale Attention (W-MSA) and Shifted Window Multi-scale 

Attention (SW-MSA) are expressed in Equations (1-4) 

(Hathot et al., 2021).

             z  l = W - (LM (zl - 1)) + zl - 1 (1)

            zl = M (LN (zl - 1)) + z  l (2)

            z  l + 1 = SW - M (LN (zl)) + zl (3)

           zl + 1 = M (LN (z  l + 1)) + z  l + 1 (4)

In these equations, (z ^ l) represents the output of each 

block, and (zl – 1) represents the input from the previous 

block. (LN) denotes layer normalization, (MLP) denotes the 

multi-layer perceptron, (W-MSA) denotes window-based 

multi-head self-attention, and (SW-MSA) denotes shifted 

window multi-head self-attention.

1.4 Patch Merging

This stage reduces the spatial resolution of the image by 

merging adjacent 2 x 2 patches into a single unit, 

concatenating their features, and adjusting the depth 

through fully connected layers. This down sampling 

process mirrors techniques used in CNNs, allowing the 

model to extract higher-level features and expand its 

receptive field progressively across stages.

Each (2×2) set of nearby pixels is combined into a patch 

during patch merging, and pixels with the same color are 

combined to create four feature maps. The depth 

dimension is then used to concatenate these feature 

maps. The output from this step passes through layer 

normalization (LN) and fully connected (FC) layers, which 

are intended to linearly modify the feature map's depth, 

changing it from C to C/2, as shown in Figure 6. The model 

can extract higher-level characteristics and capture 

bigger receptive fields thanks to this reduction in spatial 

dimensions (Dumoulin & Visin, 2016).

2. Experimental Settings

To evaluate the proposed system, this study utilizes the 

Ù

Ù

Ù

Ù Ù

Figure 6. Patch Merging

Severity level

Class 0 (Normal )

Class 1(Mild )

Class 2 (Moderate )

Class 3 ( Severe)

Class 4 (Proliferative )

Total

Number of Images

1805

370

999

193

295

3662

Table 2. Dataset Summary of the APTOS Dataset

29l l i-manager’s Journal on Pattern Recognition, Vol. 12  No. 1 June 2025



RESEARCH PAPERS

image analysis. A detailed examination of the 

experimental results assesses the system's performance 

across multiple dimensions and explores the broader 

implications of these findings for both research and 

clinical practice.

3.2 Dataset Overview

The APTOS 2019 Blindness Detection dataset formed the 

basis for both the training and testing phases of this study 

(Kaggle, 2019). Comprising 3,662 retinal fundus images, 

the dataset spans the full range of DR severity levels, from 

No DR to Proliferative DR, as previously outlined. Its diversity 

and expert annotations make it an ideal testbed for 

evaluating the model's diagnostic capabilities.

No DR

Mild DR

Moderate DR

Severe DR

Proliferative DR

3.3 Performance Metrics

To comprehensively assess the model's effectiveness, 

several standard performance metrics were employed 

(Tharwat, 2021):

Accuracy (ACC): The percentage of images correctly 

classified out of the total sample.

Precision (P): The fraction of positive predictions that 

are true positives, indicating prediction reliability.

Recall (R): The proportion of actual positive cases 

correctly identified, reflecting detection sensitivity.

F1-score (F1): A harmonic average of precision and 

recall, offering a balanced measure of performance 

(Powers, 2020).

Balanced Accuracy: The average of true positive and 

true negative rates, providing a robust metric for 

imbalanced datasets.

·

·

·

·

·

·

·

·

·

·

compatibility with the model's architecture. Training and 

evaluation were conducted on a high-performance GPU 

equipped with 12.68 GB of storage capacity and 5.71 GB 

of dedicated memory, capable of supporting the 

computational demands of deep learning workflows. To 

achieve opt imal per formance, an extens ive 

hyperparameter tuning process was undertaken, 

exploring a wide range of values to fine- tune the model's 

behavior (Kaggle, 2019). Figure 7 shows the training and 

validation loss and accuracy per epoch, illustrating the 

model's convergence trends and performance stability 

during training. The final configuration, shown in Table 3, 

reflects the settings that yielded the best results for DR 

severity grading. 

3. Results and Discussion

3.1 Introduction

The application of the Swin Transformer for identifying and 

categorizing Diabetic Retinopathy represents a 

significant leap forward in the field of automated medical 

Figure 7. Training and Validation Loss and Accuracy per Epoch

Hyper-parameter

Batch Size

Learning Rate

Size of shifting window

Size of attention window

Epoch

Weight decay

Optimizer

Patch size

Embedded dimension

Value

32

1e - 4

16

16

25

1e - 3

AdamW

16×16

96

Table 3. Hyper-parameters in Swin Transformer 
Training (Bergstra & Bengio, 2012)
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3.4.3 Comparative Analysis

Compared to ResNet50 and Vision Transformer, the Swin 

Transformer exhibits:

Reduced Computational Overhead: The window-

shifting mechanism lowers the complexity of 

processing, enabling faster training times compared 

to the quadratic demands of ViT.

Improved Processing Speed: Optimized attention 

computations enhance inference efficiency, making 

the model more practical for real-world applications.

3.4.4 Discussion

3.4.4.1 Strengths of Swin Transformer

Enhanced Feature Representation: The adaptive 

window-shifting technique allows the model to 

analyze retinal images at multiple scales, improving 

its sensitivity to subtle DR indicators, such as 

microaneurysms, which are typically missed by less 

sophisticated models (Liu et al., 2021).

Scalability: Its hierarchical processing framework 

enables efficient handling of high-resolution images 

while keeping memory consumption in check, a 

significant advantage over traditional CNNs that 

struggle with resource demands as image size 

increases (Liu et al., 2021).

Effects of Data Augmentation: The incorporation of 

data augmentation techniques, such as random 

cropping and contrast adjustments, enhances the 

model's robustness, contributing to its high-test 

accuracy and ability to generalize across diverse 

retinal images (Shorten & Khoshgoftaar, 2019).

3.4.4.2 Challenges and Limitations

High Computational Requirements: Despite its 

efficiency gains, the Swin Transformer still requires 

substantial computational resources, particularly 

GPU power, for training, which may limit its 

accessibility in resource-constrained settings (Liu et 

al., 2021).

Inter-class Similarity: Distinguishing between DR 

stages with overlapping characteristics (such as mild 

versus moderate) remains a challenge due to the 

·

·

·

·

·

·

·

In these equations, TP represents true positives, TN 

represents true negatives, FP represents false positives, 

and FN represents false negatives.

3.4 Experimental Results

3.4.1 Model Performance

The Swin Transformer demonstrated exceptional 

performance, significantly outperforming established 

baseline models such as ResNet50 and the original vision 

Transformer (ViT). The detailed results from the test dataset 

are shown in Table 4.

3.4.2 Confusion Matrix

The confusion matrix for the Swin Transformer model is 

shown in Figure 8, illustrating the model's ability to 

discriminate between the five stages of diabetic 

retinopathy.

callecision

callecision
ScoreF

RePr

RePr
21

+

´
=́-

2

TTNRTPR
accuracyBalanced

+
=

Label Precision

0

1

2

3

4

                             Accuracy

Macro Avg

Weighted Avg

1.00

0.97

1.00

0.93

1.00

0.98

0.99

Recall F1- score

1.00

1.00

0.98

1.00

0.98

0.99

0.99

1.00

0.99

0.99

0.96

0.99

0.99

0.99

0.99

Support

355

72

181

37

59

704

704

704

Table 4. Performance Metrics of Swin Transformer

Figurer 8. Confusion Matrix for Swin Transformer
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Conclusion

The Swin Transformer showcases extraordinary proficiency 

in evaluating the severity of Diabetic Retinopathy, 

achieving a test accuracy of 99.57% that markedly 

exceeds the capabilities of established models like 

ResNet50 and the original Vision Transformer. Its innovative 

window-shifting mechanism, coupled with a hierarchical 

processing structure, enables the model to adeptly 

capture both localized retinal details and broader 

contextual features, delivering unparalleled diagnostic 

precision. Advanced preprocessing strategies, including 

augmentation and normalization, further bolster its 

resilience against dataset imbalances, ensuring 

consistent performance across all DR stages. However, 

challenges such as high computational requirements 

and the need for greater interpretability remain, 

necessitating the integration of explainable AI techniques 

like Explainable AI (XAI) to enhance clinical acceptance 

and trust.

Beyond its application to DR, the Swin Transformer holds 

significant promise for broader medical imaging tasks, 

offering a versatile framework that could be adapted to 

other diagnostic challenges. Future research should 

prioritize the exploration of hybrid architectures that blend 

convolutional and transformer approaches, rigorous 

validation across diverse datasets to confirm 

generalizabil i ty, and optimization for real-t ime 

deployment on resource-limited devices. These efforts will 

further solidify the model's role as a transformative tool in 

healthcare, facilitating early detection of vision-

threatening conditions like DR and ensuring timely 

interventions that improve patient outcomes. By 

addressing critical global health challenges through AI-

driven innovation, this study underscores the potential of 

advanced deep learning systems to revolutionize 

diagnostic practices and enhance the quality of care 

worldwide.
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