JIP_V3_N1_RP4 Analysis Of Iris Segmentation Using Circular Hough Transform And Daughman's Method Divya Ann Roy Urmila S. Soni Journal on Image Processing 2349-6827 3 1 29 36 Daughman, Segmentation, Recognition, Biometric, Circular Hough Transform Iris recognition is a special type of biometric system, which is used to identify a person by analyzing the patterns in the iris. It is used to recognize the human identity through the textural characteristics of one's iris muscular patterns. Although eye colour is dependent on heredity, iris is independent even in the twins. Out of various biometrics such as finger and hand geometry, face, ear and voice recognition, iris recognition has been proved to be one of the most accurate and reliable biometric modalities because of its high recognition. Iris recognition involves 5 major steps. Firstly, image acquisition is done in which the image is captured by a high resolution camera, then the iris and the pupillary boundary are extracted out from the whole eye image, which is called segmentation. After segmentation, the circular dimension is converted to a fixed rectangular dimension which is called normalization. From this normalised image, the feature is extracted from Gabor filter, DFT, FFT, etc. At last, the iris code is matched using Hamming distance and Euclidean method. This project focuses on iris segmentation. Iris segmentation is the most important part in the iris recognition process because the areas that are wrongly considered as the iris regions would corrupt the biometric templates resulting in a very poor recognition [16]-[21]. The main objective of iris segmentation is to separate the iris region from the pupil and sclera boundaries. There are various methods for segmenting the iris from an eye image to give a best segmented result. In this project, iris segmentation is done using Daugman's integro differential method and Circular Hough Transform to find out the pupil and the iris boundaries. Iris images are taken from the CASIA V4 database, and the iris segmentation is done using Matlab software where iris and pupilary boundaries are segmented out. The experimental result shows that 84% accuracy is obtained by segmenting the iris by Circular Hough Transform and 76% accuracy is obtained by segmenting the iris through Daughman's method. It is concluded that, the Circular Hough Transform method of iris recognition is more accurate than the Daughman's method. January - March 2016 Copyright © 2016 i-manager publications. All rights reserved. i-manager Publications http://www.imanagerpublications.com/Article.aspx?ArticleId=5934