Cellulosic Nanocomposites: Functional Vector For Arsenic Remediation

Kiran Singh*, TJM Sinha**, Shalini Srivastava***
* _*** Faculty of Science, Department of Chemistry, Dayalbagh Educational Institute, Agra, India.
** ACS Chemical Innovations, Navi Mumbai, Maharashtra, India.
Periodicity:January - March'2014
DOI : https://doi.org/10.26634/jms.1.4.2691

Abstract

Surface Functionalization of Nanocrystalline Cellulose using Diethyl Amine was carried out to form an Anion Adsorbent (3-N-N' dimethylamino-2-hydroxypropyl Nanocrystalline Cellulose Ether) for Arsenic Remediation. The product was thoroughly characterized using modern tools. Nano-biosorbent had high efficiency of removal of trivalent (85.20 %) and pentavalent (97.60 %) arsenic from aqueous solutions, even at low concentrations. Adsorption capacity was found to be 8.28 and 9.56 mg/g for As (III) and As (V) respectively. Functionalized nano-biosorbent is ideally suited for economic biosorbent for pretreatment step before large scale chemical treatments for arsenic remediation.

Keywords

Arsenic, Functionalization, Isotherms, Kinetics Nano-biosorbent.

How to Cite this Article?

Singh, K., Sinha, T. J. M., & Srivastava, S. (2014). Cellulosic Nanocomposites: Functional Vector For Arsenic Remediation. i-manager's Journal on Material Science, 1(4), 8-15. https://doi.org/10.26634/jms.1.4.2691

References

[1]. B.K. Mandal, K.T. Suzuki, (2002). Arsenic round the world: a review. Talanta. 58 201–235.
[2]. D. Mohan, C. U. Pittman, (2007). Arsenic removal from water/ wastewater using adsorbents-a critical review. J. Hazard. Mater. 142 1–53.
[3]. S. Kundu, A.K. Gupta, (2006). Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As (V) - kinetics, equilibrium and thermodynamic studies. Colloid. Surf. A. Physicochem. Eng. Asp. 273 121- 128.
[4]. T.S.Y. Choonga, T.G. Chuaha, Y. Robiaha, F.L.G. Koaya, I. Azni, (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination. 217 139–166.
[5]. B.L. Rivas, M.C. Aguirre, (2010). Removal of As (III) and As (V) by Tin (II) compounds. Water. Res. 44 5730-5739.
[6]. U. Bose, M. Rahman, M. Alamgir, (2011). Arsenic toxicity and speciation analysis in ground water samples: a review of some techniques. Int. J. Chem. Tech. 3(1): 14–25.
[7]. WHO (1993) Guidelines for drinking water quality, World Health Organization, Geneva, Switzerland.
[8]. M.S.S. Pereira, E.Winter, J.R. Guimaraes, S. Rath, A.H. Fostier, (2007). A simple voltammetric procedure for speciation and evaluation of As removal from water. Environ. Chem. Lett. 5 137–141.
[9]. J.S. Wang, C.M. Wai, (2004). Arsenic in drinking water-a global environmental problem. J. Chem. Educ. 81 207–213.
[10]. N. Sohel, P.L. Ake, M. Rahman, S.P. Kim, Y. Muhammad, E.E. Charlotte, V. Marie, (2009). Arsenic in drinking water and adult mortality: a population based cohort study in rural Bangladesh. Epidemiol. 20 824–830.
[11]. M. Shih, (2005). An overview of arsenic removal by pressure-driven membrane processes. Desalination. 172(1): 85-97.
[12]. M.I.S. Gonzaga, J.A.G Santos, L.Q. Ma, (2006). Arsenic phytoextraction and hyper accumulation by fern species. Scientia. Agricola. 63 90–101.
[13]. J.T. Mayo, C. Yavuz, (2007). The effect of Nanocrystalline magnetite size on arsenic removal. Sci. Tech. of Advanc. Mat. 8(1–2): 71–75.
[14]. J. Hu, I.M.C. Lo, G. Chen, (2004). Removal of Cr(VI) by magnetite nanoparticle. Water Sci. Technol. 50 (12): 139- 146.
[15]. G.H. Khoe, J.C.Y. Huang, R.G. Robins. (1991). Precipitation Chemistry of the Aqueous Ferrous Arsenate System. In: EPD Congress '91. TMS, Warrendale PA, 103-105.
[16]. T. Nishimura, K. Tozawa. (1978). On the Solubility Products of Ferric, Calcium and Magnesium Arsenates. Bull. Res. Inst. Min. Dress. Metall. 34 (1), 19-26.
[17]. Z.K. Chowdhury, G.L. Amy, R.C. Bales. (1991). Coagulation of submicron colloids in water treatment by incorporation into aluminium hydroxide floc. Environ. Sci. Technol. 25(10), 1766-1773.
[18]. G. Prasad, (1994). Arsenic in the Environment. Part 1, New York. 33.
[19]. H.J. Shipley, S. Yean, A.T. Kan, M.B. Tomson, (2009). Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Environ. Toxicol. Chem. 28 (3): 509-515.
[20]. T. Tuutijärvi, M. Sillanpää, J. Lu, G. Chenb, (2009). As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 166 1415-1420.
[21]. S. Tokunaga, S.A. Wasay, S.W. Park, (1999). Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds. Wat. Sci. Technol. 35(7): 7-18.
[22]. M. Chanda, K.F. O'driscoll, G.L. Rempel, (1988). Ligand exchange sorption of arsenate and arsenite anions bychelating resins in ferric ion form: II. iminodiacetic chelating resin Chelex 100. React. Polym. 8 85–95.
[23]. H. Egawa, T. Nonaka, H. Maeda. (1985). Studies of selective adsorption resins. XXII. Removal and recovery of arsenic ion in geothermal power waste solution with chelating resin containing mercapto groups. Sep. Sci. Technol. 20 653–64.
[24]. H. Matsunaga, T. Yokoyama, R.J. Eldridge, B.A. Bolto. (1996). Adsorption characteristics of arsenic(III) and arsenic(V) on iron(III)-loaded chelating resin having lysine- Na, Na-diacetic acid. React. Funct. Polym. 29 167–74.
[25]. I. Yoshida, K. Ueno, H. Kobayashi. (1978). Selective separation of arsenic(III) and (V) ions with ferric complex of chelating ion-exchange resin. Sep. Sci. Technol.13 173–84.
[26]. B. Petrusevski, J. Boere, S.M. Shahidullah, S.K. Sharma, J.C. Schippers, (2002). Adsorbent-based point-of-use system for arsenic removal in rural areas. J. Water SRT-Aqua. 51 135-144.
[27]. W. Driehaus, M. Jekel, (1998). Granular ferric hydroxide d a new adsorbent for the removal of arsenic from natural water. J. Water SRT-Aqua. 47 1-6.
[28]. R.W. Lawrence, T.W. Higgs, (1999). Removing and stabilizing As in acid mine water. J. Met. 51(9): 27–39.
[29]. A.H. Mirza, V. Ramachandran, (1996). Removal of arsenic and selenium from wastewaters-a review. In Second International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes, The Minerals, Metals & Materials Society, Salt Lake City, Utah.
[30]. J.N. Egila, B.E.N. Dauda, Y.A. Iyaka, T. Jimoh, (2011). Agricultural waste as a low cost adsorbent for heavy metal removal from wastewater. Int. J. Phys. Sci. 6(8): 2152–2157.
[31]. P. Goyal, S. Srivastava, (2009). Characterization of novel Zea mays based biosorbent designed for toxic metals biosorption. J. Haz. Mat. 172 1206–1211.
[32]. K.R. Raj, A. Kardam, J.K.. Arora, M.M. Srivastava, S. Srivastava, (2010). Neural network modeling for Ni(II) removal from aqueous system using shelled Moringa oleifera seed powder as an agricultural waste. JWARP. 2 331-338.
[33]. S. Guhab, M. Chaudhuri, (1990). Removal of As(III) from groundwater by low cost materials. Asian Environ. 12 42.
[34]. J. Theron, J.A. Walker, T.E. Cloete, (2008).
Nanotechnology and water treatment: applications and emerging opportunities. Cri. Rev. Microbiol. 34(1): 43–69.
[35]. K.T. Dhermendra, J. Behari, S. Prasenjit, (2008). Application of nanoparticles in waste water treatment. World App. Sci. J. 3(3): 417–433.
[36]. W.X. Zhang, (2003). Nanoscale iron particles for environmental remediation: an overview. J. Nano. Res. 5 323–332.
[37]. M. Botes, T.E. Cloete, (2010). The potential of nanofibers and nanobiocides in water purification. Cri Rev. Microbiol. 36(1): 68–81.
[38]. S. Dixit, J.G. Hering, (2003). Comparison of arsenic(V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37 41-82.
[39]. A.P. Grosvenor, B.A. Kobe, N.S. McIntyr, (2004). Examination of the oxidation of iron by oxygen using X-ray photoelectron spectroscopy and QUASES. Surf. Sci. 565 151-162.
[40]. S. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20(12).
[41]. C.T. Yavuz, J.T. Mayo, WW. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, V.L. Colvin, (2006). Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Sci. 314 (5801): 964-967.
[42]. T. Tuutijärvi, M. Sillanpää, J. Lu, G. Chenb, (2009). As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 166 1415-1420.
[43]. G.T. Paul, L.J. Richard, (2006). Nanotechnologies for environmental cleanup. Nanotoday. 1(2): 44–48.
[44]. B. Karn, T. Kuiken, M. Otto, (2009). Nanotechnology and in situ remediation: a review of the benefits and potential risks. Env. Health Perspec. 117(12): 1823–1831.
[45]. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, (2010). Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts. Waste. Manag. 30 504–520.
[46]. M.A. Samir, F. Alloin, A. Dufresne, (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromol. 6 612–626.
[47]. P.M. Visakh, S. Thomas, (2010). Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Bio. Valor. 1 121–134.
[48]. H. Ma, C. Burger, B.S. Hsiao, B. Chu, (2011). Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J. Mat. Chem. 21 7507–7510.
[49]. H. Ma, B.S. Hsiao, B. Chu, (2012). Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO2 in water. ACS Macro Lett. 1 213–216.
[50]. M. Ioelovich, (2012). Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. J. Nanosci. Nanotechnol. 2 (2): 9-13.
[51]. A.I. Vogel, (1975). Elementary Practical Organic Chemistry” Part 3, “Quantitative Organic analysis” Longman Group Ltd. (London), 2nd Ed. 652.
[52]. S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson. (2010). Cellulose Cr ystallinity Index: Measurement Techniques and their Impact on Interpreting Cellulase Performance, Biotechnol. for Biofuels. 3 1-10.
[53]. S. Cornu, D. Breeze, A. Saada, P. Baranger. (2003). The influence of pH, electrolyte type, and surface coating on arsenic (V) adsorption onto kaolinite. Soil Sci. Soc. Am. J. 67 1127– 1132.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.