2O nanoparticles shows that there is adsorption of nanopaticles on to the metal surface in the presence of acid media.

">

Bio Synthesis of Silver Oxide Nanoparticles and their Characterization

R. Khandelwal*, S. K. Arora**, V. Uma***, D. M. Phase****
* Assistant Professor (Chemistry), Department of Humanities and Sciences in Government Women Engineering College, Ajmer, Rajasthan, India.
**-*** Associate Professor, Department of Chemistry, SPC Government College, Ajmer, Rajasthan, India.
**** Senior Scientist, UGC-DAE-CSR, Indore, Madhya Pradesh, India.
Periodicity:October - December'2018
DOI : https://doi.org/10.26634/jms.6.3.14799

Abstract

In the present paper, the authors report their work on bio synthesis of silver nanoparticles by aqueous extraction of seeds of Phaseolus vulgaris. These synthesized nanoparticles are characterized by Uv-Vis Spectroscopy, Fourier Transform (FT) infrared spectrometry, Raman Spectroscopy, and XRD, and then evaluated for their corrosion inhibition potential for mild steel in acid media. The results show that the phytochemicals present in the seed extract of Phaseolus vulgaris can act as a reducing agent as well as capping agent for nanoparticles. Silver nanoparticles in the form of silver oxide were confirmed in the XRD study with the average size 15.75 nm and cubic in nature. Corrosion inhibition potential of these particles has been determined by mass loss method. Results show that these particles can inhibit rate of corrosion of mild steel in acid media if the uniform protective layer would be formed on the metal surface, and can be used in industries as a corrosion inhibitor. The Scanning Electron Microscopy image of the mild steel samples with and without Ag2O nanoparticles shows that there is adsorption of nanopaticles on to the metal surface in the presence of acid media.

Keywords

Phaseolus Vulgaris, Green Synthesis, Silver Nanoparticles, UV-Vis. Spectroscopy, FTIR Analysis, Raman Spectroscopy, XRD Analysis, Scanning Electron Microscopy, Corrosion Inhibition, Mild Steel.

How to Cite this Article?

Khandelwal,R., Arora, S. K., Uma, V., and Phase, D. M.. (2018). Bio Synthesis of Silver Oxide Nanoparticles and their Characterization. i-manager’s Journal on Material Science, 6(3), 18-27. https://doi.org/10.26634/jms.6.3.14799

References

[1]. Bao, P. D., Huang, T. Q., Liu, X. M., & Wu, T. Q. (2001). Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus. Journal of Raman Spectroscopy, 32(4), 227-230.
[2]. Bhumi, G., Rao, M. L., & Savithramma, N. (2015). Green synthesis of silver nanoparticles from the leaf extract of Adhatoda vasicanees and assessment of its antibacterial activity. Asian J. Pharm. Clin. Res., 8(3), 62- 67.
[3]. Chen, Z., Zhang, X., Cao, H., & Huang, Y. (2013). Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst, 138(8), 2343- 2349.
[4]. Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram- negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103-109.
[5]. Gallardo, O. A. D., Moiraghi, R., Macchione, M. A., Godoy, J. A., Pérez, M. A., Coronado, E. A., & Macagno, V. A. (2012). Silver oxide particles/silver nanoparticles interconversion: Susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Advances, 2(7), 2923-2929.
[6]. Graf, P., Mantion, A., Foelske, A., Shkilnyy, A., Mašić, A., Thünemann, A. F., & Taubert, A. (2009). Peptide-coated silver nanoparticles: Synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry–A European Journal, 15(23), 5831-5844.
[7]. Hausler, R. H. (1983). Proc. In Int. Conf. on 'Corrosion inhibition', Dallas, TX, USA, May (Vol. 7, p. 16).
[8]. He, R., Qian, X., Yin, J., & Zhu, Z. (2002). Preparation of polychrome silver nanoparticles in different solvents. Journal of Materials Chemistry, 12(12), 3783-3786.
[9]. Henglein, A. (1989). Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 89(8), 1861-1873.
[10]. Henglein, A. (1993). Physicochemical properties of small metal particles in solution: "Microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. The Journal of Physical Chemistry, 97(21), 5457-5471.
[11]. Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. R. (2009). Plant system: nature's nanofactory. Colloids and Surfaces B: Biointerfaces, 73(2), 219-223.
[12]. Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65(1), 150-153.
[13]. Mukherjee, 4., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., ... & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19(7), 075103.
[14]. Nath, S. S., Chakdar, D., & Gope, G. (2007). Synthesis of CdS and ZnS quantum dots and their applications in electronics. Nanotrends, 2(3), 20-28.
[15]. Nath, S. S., Chakdar, D., Gope, G., & Avasthi, D. K. (2008). Effect of 100 MeV nickel ions on silica coated ZnS quantum dots. Journal of Nanoelectronics and optoelectronics, 3(2), 180-183.
[16]. Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces, 82(1), 152-159.
[17]. Rao, M. L., & Savithramma, N. (2012). Antimicrobial activity of silver nanoparticles synthesized by using stem extract of Svensonia hyderobadensis (Walp.) Mold - A rare medicinal plant. Research in Biotechnology, 3(3), 1-7.
[18]. Rao, M. L., Bhumi, G., & Savithramma, N. (2013). Green synthesis of silver nanoparticles by Allamanda cathartica L. leaf extract and evaluation for antimicrobial activity. Int. J. Pharm Sci. Nanotech., 6(4), 2260-2268.
[19]. Rastogi, L., & Arunachalam, J. (2011). Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Materials Chemistry and Physics, 129(1-2), 558-563.
[20]. Rothschild, K. J. (2016). The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective. Biomedical Spectroscopy and Imaging, 5(3), 231-267.
[21]. Saifuddin, N., Wong, C. W., & Yasumira, A. A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry, 6(1), 61-70.
[22]. Shehzad, A., Chander, U. M., Sharif, M. K., Rakha, A., Ansari, A., & Shuja. M. Z. (2015). Nutritional, functional and health promoting attributes of red kidney beans: A review. Pak. J. Food Sci., 25(4), 235-246.
[23]. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103.
[24]. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981-2988.
[25]. Talati, J. D., & Gandhi, D. K. (1991). Corrosion of zinc in citric acid containing food colourants. Indian Journal of Technology, 29(6), 277-282.
[26]. Toh, H. S., Jurkschat, K., & Compton, R. G. (2015). The Influence of the Capping agent on the Oxidation of Silver Nanoparticles: Nano-impacts versus Stripping Voltammetry. Chemistry–A European Journal, 21(7), 2998-3004.
[27]. Varkey, A. J., & Fort, A. F. (1993). Some optical properties of silver peroxide (AgO) and silver oxide (Ag O) 2 films produced by chemical-bath deposition. Solar Energy Materials and Solar Cells, 29(3), 253-259.
[28]. Venkateswarlu, P., Ankanna, S., Prasad TNVKV, E. E., Nagajyothi, P. C., & Savithramma, N. (2010). Green synthesis of silver nanoparticles using Shorea tumbuggaia stem bark. Int. J. Drug Dev. Res., 2(4), 720-723.
[29]. Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters, 61(6), 1413-1418.
[30]. Wijnhoven, S. W., Peijnenburg, W. J., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H., ... & Dekkers, S. (2009). Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2), 109-138.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.