A Perspective on Wind Turbines For Electric Power Generation

M. Faisal Khan*, M. Rizwan Khan**
* Assistant Professor, University Polytechnic, Faculty of Engineering & Technology, AMU, Aligarh, India.
** Professor, Department of Electrical Engineering, Aligarh Muslim University, Aligarh, India.
Periodicity:October - December'2017
DOI : https://doi.org/10.26634/jee.11.2.13854

Abstract

Wind energy is expected to contribute substantially to realize the sustainable development goals 2030 of the United Nations (UN). Substantial growth in global installed capacity of electric power generated from wind in the past decade has lead to corresponding upsurge in the research on Wind Energy Conversion Systems (WECS). This study endeavours to discuss various issues pertaining to the WECS. Fundamental terms of wind turbines, their types, application wise suitability, and the operational features are elaborated. Details regarding the blade designs and the aerodynamics are explained through necessary mathematical modeling. Also, a perspective is presented on various types of generators suitable for WECS along with specific attributes and shortcomings of each. The feasibility of multi-phase self excited induction generators for wind energy application is demonstrated through experimental results of six and nine phase variants.

Keywords

How to Cite this Article?

khan, M. F., and khan, M. R., (2017). A Perspective on Wind Turbines For Electric Power Generation. i-manager’s Journal on Electrical Engineering, 11(2), 41-54. https://doi.org/10.26634/jee.11.2.13854

References

[1]. Ahmed, S. (2011). Wind Energy: Theory and Practice. PHI Learning Pvt. Ltd.
[2]. Ajao, K. R. & Mahamood, M. R. (2009). Wind energy conversion system: The past, the present, and the prospect. Journal of American Science, 5(6), 17-22.
[3]. Alnasir, Z. & Kazerani, M. (2013). An analytical literature review of stand-alone wind energy conversion systems from generator viewpoint. Renewable and Sustainable Energy Reviews, 28, 597-615.
[4]. Argatov, I. & Shafranov, V. (2016). Economic assessment of small-scale kite wind generators. Renewable Energy, 89, 125-134.
[5]. Bai, C.-J. & Wang, W.-C. (2016). Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). In Renewable and Sustainable Energy Reviews, 63, 506–519.
[6]. Bingham, R., Agelin-Chaab, M., & Rosen, M. (2016). Feasibility of a Hybrid Solar and Wind Power System for an Island Community in the Bahamas. International Journal of Renewable Energy Research (IJRER), 6(3), 951-963.
[7]. Bortolotti, P., Bottasso, C. L., & Croce, A. (2016). Combined preliminary-detailed design of wind turbines. Wind Energy Science, 1(1), 71-88.
[8]. Branlard, E. S. P. (2015). Analysis of Wind Turbine Aerodynamics and Aeroelasticity using Vortex-based Methods (Doctoral dissertation, DTU Wind Energy).
[9]. Classic Fleet. (2017). Classic fleet S88-2.1 MW, available at:http://www.suzlon.com/products/classicfeet, accessed on 28th Feb'2017.
[10]. de Freitas, T. R., Menegáz, P. J., & Simonetti, D. S. (2016). Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review. Renewable and Sustainable Energy Reviews, 54, 1334-1344.
[11]. Earnest, J. & Wizelius, T. (2011). Wind Power Plants and Project Development. PHI Learning.
[12]. Eboibi, O., Danao, L. A. M., & Howell, R. J. (2016). Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers. Renewable Energy, 92, 474-483.
[13]. El-Askary, W. A., Sakr, I. M., AbdelSalam, A. M., & Abuhegazy, M. R. (2017). Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 160, 1-15.
[14]. Fakorede, O., Feger, Z., Ibrahim, H., Ilinca, A., Perron, J., & Masson, C. (2016). Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis. Renewable and Sustainable Energy Reviews, 65, 662-675.
[15]. Gantasala, S., Luneno, J. C., & Aidanpää, J. O. (2016). Influence of icing on the modal behavior of wind turbine blades. Energies, 9(11), 862.
[16]. Global Wind Energy Council (GWEC). (2017). Global wind statistics 2016.
[17]. Hansen, L. H., Helle, L., Blaabjerg, F., Ritchie, E., Munk-Nielsen, S., Bindner, H. W. et al. (2001). Conceptual Survey of Generators and Power Electronics for Wind Turbines.
[18]. Hansen, M. O. L. (2008). 'Aerodynamics of wind turbines', Earthscan, USA, UK, 2008.
[19]. Jeon, M., Lee, S., & Lee, S. (2014). Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method. Renewable Energy, 65, 207-212.
[20]. Ji, H. S., Baek, J. H., Mieremet, R., & Kim, K. C. The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments.
[21]. Kaldellis, J. K., & Zafirakis, D. (2011). The wind energy (r) evolution: A short review of a long history. Renewable Energy, 36(7), 1887-1901.
[22]. Khan, M. F. (2015). Modeling and Control of Multiphase Induction Generator for Wind Energy Applications (Doctoral Dissertation, Aligarh Muslim University, India).
[23]. Khan, M. F., & Khan, M. R. (2013). Wind power generation in India: evolution, trends and prospects. International Journal of Renewable Energy Development, 2(3), 175-186.
[24]. Khan, M. F., & Khan, M. R. (2016). Analysis of voltage build-up and speed disturbance ride through capability of a self-excited induction generator for renewable energy application. International Journal of Power and Energy Conversion, 7(2), 157-177.
[25]. Khan, M. F., Khan, M. R., & Iqbal, A. (2017). Modeling, implementation and analysis of a high (six) phase self excited induction generator. Journal of Electrical Systems and Information Technology.
[26]. Lebsir, A., Bentounsi, A., Benbouzid, M., & Mangel, H. (2015). Electric generators fitted to wind turbine systems: An up-to-date comparative study. Journal of Electrical Systems, 11(3), 281-295.
[27]. Levi, E. (2016). Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Transactions on Industrial Electronics, 63(1), 433-448.
[28]. Li, H., & Chen, Z. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123-138.
[29]. Mansouri, M. M., Nayeripour, M., & Negnevitsky, M. (2016). Internal electrical protection of wind turbine with doubly fed induction generator. Renewable and Sustainable Energy Reviews, 55, 840-855.
[30]. Murthy, S. S., (2016). "Renewable energy generators and control". in Rashid, M. H. (Eds.). Electric Renewable Energy Systems. Academic Press, Boston.
[31]. Okulov, V., & van Kuik, G. A. (2009). The Betz- Joukowsky limit for the maximum power coefficient of wind turbines. International Scientific Journal for Alternative Energy and Ecology, (9), 106-111.
[32]. Pao, L. Y., & Johnson, K. E. (2009, June). A tutorial on the dynamics and control of wind turbines and wind farms. In American Control Conference, 2009. ACC'09. (pp. 2076-2089). IEEE.
[33]. Price, T. J. (2005). James Blyth—Britain's first modern wind power pioneer. Wind engineering, 29(3), 191-200.
[34]. Ragheb, M., & Ragheb, A. M. (2011). Wind turbines theory-the betz equation and optimal rotor tip speed ratio. In Fundamental and advanced topics in wind power. InTech.
[35]. Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design. Energies, 5(9), 3425-3449.
[36]. Serrano-González, J., & Lacal-Arántegui, R. (2016). Technological evolution of onshore wind turbines—a market-based analysis. Wind Energy, 19(12), 2171-2187.
[37]. Seyoum, D. (1977). The dynamic analysis and control of a self-excited induction generator driven by a wind turbine (Doctoral Dissertation, University of New South Wales, Australia).
[38]. Stotsky, A., Egardt, B., & Carlson, O. (2013, June). Control of wind turbines: A tutorial on proactive perspectives. In American Control Conference (ACC), 2013 (pp. 3429-3436). IEEE.
[39]. Tang, X., Huang, X., Peng, R., & Liu, X. (2015). A direct approach of design optimization for small horizontal axis wind turbine blades. Procedia CIRP, 36, 12- 16.
[40]. Ten Hoeve, J. E., & Jacobson, M. Z. (2012). Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy & Environmental Science, 5(9), 8743- 8757.
[41]. Thomsen, B., Guerrero, J. M., & Thøgersen, P. B. (2014). Faroe islands wind-powered space heating microgrid using self-excited 220-kw induction generator. IEEE Transactions on Sustainable Energy, 5(4), 1361-1366.
[42]. United Nations (UN) (2016) Sustainable development goals: 2030 agenda for ustainable development.
[43]. Wang, L., Liu, X., & Kolios, A. (2016). State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renewable and Sustainable Energy Reviews, 64, 195-210.
[44]. Xie, S., & Archer, C. (2015). Self-similarity and turbulence characteristics of wind turbine wakes via largeeddy simulation. Wind Energy, 18(10), 1815-1838.
[45]. Zaharia, A. A. L., Brisset, S., & Radulescu, M. M. (2016, September). Modeling approaches to brushless DC permanent-magnet generator for use in micro-wind turbine applications. In Electrical Machines (ICEM), 2016 XXII International Conference on (pp. 445-451). IEEE.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.