Silicon-Germanium Hbt Technology and Applications: A Review

Roberto Marani*, 0**
Roberto Marani  Anna Gina Perri
*Researcher, Consiglio Nazionale delle Ricerche, Istituto di Studi sui Sistemi Intelligenti per l'Automazione (ISSIA), Bari, Italy.
**Full Professor of Electronics and Head of Electronic Devices Laboratory, Department of Electrical and Information Engineering, Bari, Italy.
Periodicity:September - November'2017
DOI : https://doi.org/10.26634/jele.8.1.13837

Abstract

The aim of this review paper is to define the role of SiGe HBTs within the Technology Revolution that will lead to a globally interconnected smart world. At first, the authors have presented the recent developments of SiGe BiCMOS technologies and their applications to unit circuit blocks and integrated solutions. Then modern HBT device structures, technological aspects, scaling strategies, design issues, and future directions are also discussed. TCAD-based simulations predict that SiGe HBTs with cut-off and maximum oscillation frequencies of 780 GHz and 2 THz, respectively will become feasible by the year 2030.

Keywords

How to Cite this Article?

Marani, R., and Perri, A.G. (2017). Silicon-Germanium Hbt Technology and Applications: A Review. i-manager’s Journal on Electronics Engineering, 8(1), 35-53. https://doi.org/10.26634/jele.8.1.13837

References

References

[1]. Ahlgren, D. C., Gilbert, M., Greenberg, D., Jeng, J., Malinowski, J., Nguyen-Ngoc, D. et al. (1996, December). Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace. In Electron Devices Meeting, 1996. IEDM'96., International (pp. 859-862). IEEE.
[2]. Ahmed, F., Furqan, M., Aufinger, K., & Stelzer, A. (2016, October). A SiGe-based broadband 100–180-GHz differential power amplifier with 11 dBm peak output power and> 1.3 THz GBW. In Microwave Integrated th Circuits Conference (EuMIC), 2016 11 European (pp. 257-260). IEEE.
[3]. Al-Eryani, J., Knapp, H., Wursthorn, J., Aufinger, K., Li, H., Majied, S. et al. (2016, October). A fundamental 229–240 GHz VCO with integrated dynamic frequency divider chain. In Microwave Conference (EuMC), 2016 th 46 European (pp. 489-492). IEEE.
[4]. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065-1082.
[5]. Bai, P., Auth, C., Balakrishnan, S., Bost, M., Brain, R., Chikarmane, V. et al. (2004, December). A 65 nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57/spl mu/m/sup 2/SRAM cell. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International (pp. 657-660). IEEE.
[6]. Bredendiek, C., Pohl, N., Aufinger, K., & Bilgic, A. (2012, September). Differential signal source chips at 150 GHz and 220 GHz in SiGe bipolar technologies based on Gilbert-Cell frequency doublers. In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2012 IEEE (pp. 1-4). IEEE.
[7]. Chevalier, P., Avenier, G., Ribes, G., Montagné, A., Canderle, E., Céli, D. et al. (2014, December). A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz f T/370 GHz f MAX HBT and high-Q millimeter-wave passives. In Electron Devices Meeting (IEDM), 2014 IEEE International (pp. 3-9). IEEE.
[8]. Chevalier, P., Lacave, T., Canderle, E., Pottrain, A., Carminati, Y., Rosa, J. et al. (2012, October). Scaling of SiGe BiCMOS technologies for applications above 100 GHz. In Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012 IEEE (pp. 1-4). IEEE.
[9]. Chevalier, P., Meister, T. F., Heinemann, B., Van Huylenbroeck, S., Liebl, W., Fox, A. et al. (2011, October). Towards THz SiGe HBTs. In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2011 IEEE (pp. 57-65). IEEE.
[10]. Chevalier, P., Pourchon, F., Lacave, T., Avenier, G., Campidelli, Y., Depoyan, L. et al. (2009, October). A Conventional Double-Polysilicon FSA-SEG Si/SiGe: C HBT Reaching 400 GHz f . In Bipolar/BiCMOS Circuits and MAX Technology Meeting, 2009. BCTM 2009, IEEE (pp. 1-4). IEEE.
[11]. Chiang, P. Y., Wang, Z., Momeni, O., & Heydari, P. (2014). A silicon-based 0.3 THz frequency synthesizer with wide locking range. IEEE Journal of Solid-State Circuits, 49(12), 2951-2963.
[12]. Chidambaram, P. R., Smith, B. A., Hall, L. H., Bu, H., Chakravarthi, S., Kim, Y. et al.(2004, June). 35% drive current improvement from recessed-SiGe drain extensions on 37 nm gate length PMOS. In VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on (pp. 48-49). IEEE.
[13]. Cisco. (n.d.). Retrieved from http://www.cisco.com/
[14]. Daembkes, H., Herzog, H. -J., Jorke, H., Kibbel, H., Kasper, E., (1986). The n-channel SiGe/Si modulationdoped field-effect transistor, IEEE Transactions on Electron Devices, 33(5), 633-638.
[15]. Daneshgar, S. & Buckwalter, J. F. (2015, October). A 22 dBm, 0.6 mm² D-Band SiGe HBT Power Amplifier using Series Power Combining Sub-Quarter-Wavelength Baluns. In Compound Semiconductor Integrated Circuit Symposium (CSICS), 2015 IEEE (pp. 1-4). IEEE.
[16]. Del Alamo, J. A. & Swanson, R. M. (1986). Forwardbias tunneling: a limitation to bipolar device scaling. IEEE Electron Device Letters, 7(11), 629-631.
[17]. Del Rio, D., Gurutzeaga, I., Rezola, A., Sevillano, J. F., Velez, I., Gunnarsson, S. E. et al. (2017). A Wideband and High-Linearity E-B and Transmitter Integrated in a 55-nm SiGe Technology for Backhaul Point-to-Point 10-Gb/s Links. IEEE Transactions on Microwave Theory and Techniques, 65(8), 2990-3001.
[18]. Fritsche, D., Leufker, J. D., Tretter, G., Carta, C., & Ellinger, F. (2015). A Low-Power Broadband 200 GHz Down- Conversion Mixer with Integrated LO-Driver in 0.13 m SiGe BiCMOS. IEEE Microwave and Wireless Components Letters, 25(9), 594-596.
[19]. Furqan, M., Ahmed, F., Feger, R., Aufinger, K., & Stelzer, A. (2016, May). A 120-GHz wideband FMCW radar demonstrator based on a fully-integrated SiGe transceiver with antenna-in-package. In Microwaves for Intelligent Mobility (ICMIM), 2016 IEEE MTT-S International Conference on (pp. 1-4). IEEE.
[20]. Furqan, M., Ahmed, F., Heinemann, B., & Stelzer, A. (2017). A 15.5-dBm 160-GHz high-gain power amplifier in SiGe BiCMOS technology. IEEE Microwave and Wireless Components Letters, 27(2), 177-179.
[21]. Grzyb, J., Statnikov, K., Sarmah, N., Heinemann, B., & Pfeiffer, U. R. (2016). A 210–270-GHz circularly polarized FMCW radar with a single-lens-coupled SiGe HBT chip. IEEE Transactions on Terahertz Science and Technology, 6(6), 771-783.
[22]. Han, R., Jiang, C., Mostajeran, A., Emadi, M., Aghasi, H., Sherry, H. et al. (2015). A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated phase-locked loop. IEEE Journal of Solid-State Circuits, 50(12), 2935-2947.
[23]. Heinemann, B., Rücker, H., Barth, R., Bärwolf, F., Drews, J., Fischer, G. G. et al. (2016, December). SiGe HBT with f /f of 505 GHz/720 GHz. In Electron Devices x max Meeting (IEDM), 2016 IEEE International (pp. 3-1). IEEE.
[24]. Hock, G., Kab, N., Hackbarth, T., Konig, U., & Kohn, E. (2000, April). 0.1/spl mu/m T-gate p-type Ge/SiGe MODFETs. In Silicon Monolithic Integrated Circuits in RF Systems, 2000. Digest of Papers. 2000 Topical Meeting on (pp. 156-158). IEEE.
[25]. Hoffman, J., Shopov, S., Chevalier, P., Cathelin, A., Schvan, P., & Voinigescu, S. P. (2016). 55-nm SiGe BiCMOS distributed amplifier topologies for time-interleaved 120- Gb/s fiber-optic receivers and transmitters. IEEE Journal of Solid-State Circuits, 51(9), 2040-2053.
[26]. Hoyt, J. L., Nayfeh, H. M., Eguchi, S., Aberg, I., Xia, G., Drake, T. et al. (2002, December). Strained silicon MOSFET technology. In Electron Devices Meeting, 2002. IEDM'02. International (pp. 23-26). IEEE.
[27]. ICCSS. (2017). Retrieved from http://isscc.org/2017/ wp-content/uploads/sites/11/2017/05/ISSCC2017 AdvanceProgram.pdf
[28]. Iyer, S. S., Patton, G. L., Delage, S. S., Tiwari, S., & Stork, J. M. C. (1987). Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy. In Electron Devices Meeting, 1987 International (pp. 874-876). IEEE.
[29]. Iyer, S. S., Patton, G. L., Stork, J. M., Meyerson, B. S., & Harame, D. L. (1989). Heterojunction bipolar transistors using Si-Ge alloys. IEEE Transactions on Electron Devices, 36(10), 2043-2064.
[30]. Jahn, M., Aufinger, K., Meister, T. F., & Stelzer, A. (2012, June). 125 to 181 GHz fundamental-wave VCO chips in SiGe technology. In Radio Frequency Integrated Circuits Symposium (RFIC), 2012 IEEE (pp. 87-90). IEEE.
[31]. Jahn, M., Stelzer, A., & Hamidipour, A. (2010, May). Highly integrated 79, 94, and 120-GHz SiGe radar frontends. In Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International (pp. 1324-1327). IEEE.
[32]. Jiang, C., Mostajeran, A., Han, R., Emadi, M., Sherry, H., Cathelin, A. et al. (2016). A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS. IEEE Journal of Solid-State Circuits, 51(11), 2596-2609.
[33]. Kim, D. H. & Rieh, J. S. (2011, December). A SiGe140- GHz low power G m-boosted down-conversion mixer. In Microwave Conference Proceedings (APMC), 2011 Asia- Pacific (pp. 1126-1129). IEEE.
[34]. Kim, D. H. & Rieh, J. S. (2012). A 135 GHz differential active star mixer in SiGe BiCMOS technology. IEEE Microwave and Wireless Components Letters, 22(8), 409- 411.
[35]. Lanzerotti, L. D., Sturm, J. C., Stach, E., Hull, R., Buyuklimanli, T., & Magee, C. (1996, December). Suppression of boron outdiffusion in SiGe HBTs by carbon incorporation. In Electron Devices Meeting, 1996. IEDM'96., International (pp. 249-252). IEEE.
[36]. Liang, R., Wang, J., Xu, J. (2009). A 240 GHz singlechip radar transceiver in a SiGe bipolar technology with on-chip antennas and ultra-wide tuning range. Tsinghua Science and Technology, 14(1), 62-67.
[37]. Lin, H. C., & Rebeiz, G. M. (2013, October). A 200- 245 GHz balanced frequency doubler with peak output power of +2 dBm. In Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013 IEEE (pp. 1- 4). IEEE.
[38]. Lin, H.-C. & Rebeiz, G. M. ( 2014). A 110–134-GHz SiGe Amplifier With Peak Output Power of 100–120 mW. IEEE Transactions on Microwave Theory and Techniques, 62(12), 2990-3000.
[39]. López, I. G., Rito, P., Petousi, D., Zimmermann, L., Kroh, M., Lischke, S. et al. (2017, January). A 40 Gb/s PAM- 4 monolithically integrated photonic transmitter in 0.25 ?m SiGe: C BiCMOS EPIC platform. In Silicon Monolithic th Integrated Circuits in RF Systems (SiRF), 2017 IEEE 17 Topical Meeting on (pp. 30-32). IEEE.
[40]. Lu, W., Kuliev, A., Koester, S. J., Wang, X. W., Chu, J. O., Ma, T. P. et al. (2000). High performance 0.1/spl mu/m gate-length p-type SiGe MODFET's and MOS-MODFET's. IEEE Transactions on Electron Devices, 47(8), 1645-1652.
[41]. Marani, R. & Perri, A. G. (2012). Comparison of electro-thermal performance of heterojunction bipolar transistors based on Si/SiGe and AlGaAs/GaAs, International Journal of Research and Reviews in Applied Sciences, 12(2), 164-172.
[42]. Masini, G., Colace, L., Assanto, G., Luan, H. C., Wada, K., & Kimerling, L. C. (1999). High responsitivity near infrared Ge photodetectors integrated on Si. Electronics Letters, 35(17), 1467-1468.
[43]. Mertens, H., Magnée, P. H. C., Donkers, J. M., van Dalen, R., Brunets, I., Van Huylenbroeck, S. et al. (2012, September). Double-polysilicon self-aligned SiGe HBT architecture based on nonselective epitaxy and polysilicon reflow. In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2012 IEEE (pp. 1-4). IEEE.
[44]. Mi, Q., Xiao, X., Sturm, J. C., Lenchyshyn, L. C., & Thewalt, M. L. W. (1992). Room-temperature 1.3-and 1.5- mu m electroluminescence from Si/Si/sub 1-x/Ge/sub x/quantum wells. IEEE Transactions on Electron Devices, 39(11), 2678.
[45]. Muralidharan, S., Wu, K., & Hella, M. (2016, January). A 110–132GHz VCO with 1.5 dBm peak output power and 18.2% tuning range in 130nm SiGe BiCMOS for D-Band transmitters. In Silicon Monolithic Integrated th Circuits in RF Systems (SiRF), 2016 IEEE 16 Topical Meeting on (pp. 64-66). IEEE.
[46]. O'Neill, A. G. & Antoniadis, D. A. (1995, September). High speed deep sub-micron MOSFET using high mobility strained silicon channel. In Solid State Device Research th Conference, 1995. ESSDERC'95. Proceedings of the 25 European (pp. 109-112). IEEE.
[47]. Osten, H. J., Knoll, D., Heinemann, B., Rucker, H., & Tillack, B. (1999). Carbon doped SiGe heterojunction bipolar transistors for high frequency applications. In Bipolar/BiCMOS Circuits and Technology Meeting, 1999. Proceedings of the 1999 (pp. 109-116). IEEE.
[48]. Pekarik, J. J., Adkisson, J., Gray, P., Liu, Q., Camillo- Castillo, R., Khater, M. et al. (2014, September). A 90 nm SiGe BiCMOS technology for mm-wave and highperformance analog applications. In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2014 IEEE (pp. 92-95). IEEE.
[49]. People, R. (1986). Physics and applications of Ge x Si 1-x/Si strained-layer heterostructures. IEEE Journal of Quantum Electronics, 22(9), 1696-1710.
[50]. Perri, A. G. (2016). Dispositivi Elettronici Avanzati, 1 Edn. Progedit, Bari, Italy.
[51]. Pfeiffer, U. R., Öjefors, E., & Zhao, Y. (2010, February). A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160GHz. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International (pp. 416-417). IEEE.
[52]. Preisler, E., Talor, G., Howard, D., Yan, Z., Booth, R., Zheng, J. et al. (2011, October). A millimeter-wave capable SiGe BiCMOS process with 270 GHz FMAX HBTs designed for high volume manufacturing. In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2011 IEEE (pp. 74-78). IEEE.
[53]. Rücker, H., Heinemann, B., & Fox, A., (2012). Half- Terahertz SiGe BiCMOS technology, Proc. 2012 IEEE Meeting on Silicon Monolithic Integrated Circuits in RF (pp. 133-136).
[54]. Sadhu, B., Tousi, Y., Hallin, J., Sahl, S., Reynolds, S., Renström, Ö. et al. (2017, February). 7.2 A 28GHz 32- element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. In Solid-State Circuits Conference (ISSCC), 2017 IEEE International (pp. 128- 129). IEEE.
[55]. Sarmah, N., Chevalier, P., & Pfeiffer, U. R. (2013). 160- GHz Power Amplifier Design in Advanced SiGe HBT Technologies with F in Excess of 10 dBm. IEEE sat Transactions on Microwave Theory and Techniques, 61(2), 939-947.
[56]. Sarmah, N., Grzyb, J., Statnikov, K., Malz, S., Vazquez, P. R., Föerster, W. et al. (2016). A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Transactions on Microwave Theory and Techniques, 64(2), 562-574.
[57]. Schmalz, K., Winkler, W., Borngraber, J., Debski, W., Heinemann, B., & Scheytt, J. C. (2010). A Subharmonic Receiver in SiGe Technology for 122 GHz Sensor Applications. IEEE Journal of Solid-State Circuits, 45(9), 1644-1656.
[58]. Schröter, M. Rosenbaum, T., Chevalier, C., Heinemann, B., Voinigescu, S. P., Preisler, E. et al. (2017). SiGe HBT Technology: Future Trends and TCAD-Based Roadmap. Proceedings of the IEEE, 105(6), 1068-1086.
[59]. Shopov, S., Hasch, J., Chevalier, P., Cathelin, A., & Voinigescu, S. P. (2015, October). A 240 GHz Synthesizer in 55 nm SiGe BiCMOS. In Compound Semiconductor Integrated Circuit Symposium (CSICS), 2015 IEEE (pp. 1-4). IEEE.
[60]. Slotboom, J. W., Streutker, G., Pruijmboom, A., & Gravesteijn, D. J. (1991). Parasitic energy barriers in SiGe HBTs. IEEE Electron Device Letters, 12(9), 486-488.
[61]. Song, S., Lee, S., Ryum, B., & Yoon, E. (1998, July). Facet Formation in Selectively Overgrown Silicon by Reduced Pressure Chemical Vapor Deposition. In Microprocesses and Nanotechnology Conference, 1998 International (pp. 240-241). IEEE.
[62]. Statnikov, K., Grzyb, J., Heinemann, B., & Pfeiffer, U. R. (2015). 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Transactions on Microwave Theory and Techniques, 63(2), 520-532.
[63]. STMicroelectronics. (n.d.). Retrieved from http://www.st.com/content/st_com/en.html
[64]. Thompson, S. E., Sun, G., Choi, Y. S., & Nishida, T. (2006). Uniaxial-process-induced strained-Si: Extending the CMOS roadmap. IEEE Transactions on Electron Devices, 53(5), 1010-1020.
[65]. Trivedi, V. P., John, J. P., Young, J., Dao, T., Morgan, D., Ma, R. et al. (2016, September). A 90 nm BiCMOS technology featuring 400GHz f SiGe: C HBT. In MAX Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2016 IEEE (pp. 60-63). IEEE.
[66]. Voinigescu, S. P., Shopov, S., Bateman, J., Farooq, H., Hoffman, J., & Vasilakopoulos, K. (2017). Silicon millimeter-wave, terahertz, and high-speed fiber-optic device and benchmark circuit scaling through the 2030 ITRS horizon. Proceedings of the IEEE, 105(6), 1087-1104.
[67]. Voinigescu, S. P., Tomkins, A., Dacquay, E., Chevalier, P., Hasch, J., Chantre, A. et al. (2013). A study of SiGe HBT signal sources in the 220-330-GHz range. IEEE Journal of Solid-State Circuits, 48(9), 2011-2021.
[68]. Wanner, R., Lachner, R., Olbrich, G. R., & Russer, P. (2007, June). A SiGe monolithically integrated 278 GHz push-push oscillator. In Microwave Symposium, 2007. IEEE/MTT-S International (pp. 333-336). IEEE.
[69]. Welser, J., Hoyt, J. L., & Gibbons, J. F. (1994). Electron mobility enhancement in strained-Si n-type metal-oxidesemiconductor field-effect transistors. IEEE Electron Device Letters, 15(3), 100-102.
[70]. Winkler, W., Debski, W., Heinemann, B., Korndorfer, F., Rucker, H., Schmalz, K. et al. (2009, September). 122 GHz low-noise-amplifier in SiGe technology. In ESSCIRC, 2009.
[71]. Yishay, R. B., Shumaker, E., & Elad, D. (2015). A 122- 150 GHz LNA with 30 dB gain and 6.2 dB noise figure in SiGe BiCMOS technology. Proc. 2015 Meeting on Silicon Monolithic Integrated Circuits in RF Systems (pp. 15-17).
[72]. Yoon, D. & Rieh, J. S. (2014). A 200 GHz heterodyne image receiver with an integrated VCO in a SiGe BiCMOS technology. IEEE Microwave and Wireless Components Letters, 24(8), 557-559.
[73]. Yoon, D., Seo, M. G., Song, K., Kaynak, M., Tillack, B., & Rieh, J. S. (2017). 260-GHz differential amplifier in SiGe heterojunction bipolar transistor technology. Electronics Letters, 53(3), 194-196.
[74]. Yuan, H.-C., Jiang, N., Ma, Z., & Croke, E.T. (2006). High-gain multi-finger power n-MODFET on Si substrate. Electronics Letters, 42(6), 3375-377.
[75]. Zhang, B., Xiong, Y. Z., Wang, L., Hu, S., Lim, T. G., Zhuang, Y. Q. et al. (2010, November). 130-GHz gainenhanced SiGe low noise amplifier. In Solid State Circuits Conference (A-SSCC), 2010 IEEE Asian (pp. 1-4). IEEE.
[76]. Zhao, Y., Heinemann, B., & Pfeiffer, U. R. (2011, October). Fundamental mode colpitts VCOs at 115 and 165-GHz. In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2011 IEEE (pp. 33-36). IEEE.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.