A New Design of Blood Flow Through Hollow Fibers For Prevention/Minimization Of Hemolysis For Possible Use In Blood Oxygenators And Dialyzers

Karim Salehpoor*, Joseph Genin**, James A. Smoake***
* Mechanical Engineering Department, New Mexico Tech, Socorro.
** Mechanical Engineering Department, New Mexico State University, Las Cruces.
*** Professor Emeritus, Biology Department, New Mexico Tech, Socorro.
Periodicity:November - January'2011
DOI : https://doi.org/10.26634/jfet.6.2.1321

Abstract

Flow-induced hemolysis is the rupture of red blood cells which occurs in blood flow devices.  Examples of such devices include blood oxygenators or artificial lungs and dialyzers.  In addition to hemolysis, blood coagulation is also associated with the use of blood oxygenators and dialyzers.  Blood coagulation increases the risk of heart attack and stroke while flow-induced hemolysis imposes a limitation on how long a blood oxygenator or a dialyzer can be used by a patient.The objective of this study was to examine if a solid-like flow through the entrance length of a tube could minimize shear stress acting on the red blood cells, thus minimize hemolysis in the tube.  Blood circulation experiments were conducted to determine the effect of the ratio of tube length to entrance length on flow-induced hemolysis in the tube.  Blood samples were taken at different time intervals and tested for hematocrits and concentration of hemoglobin in plasma.  Comparison of the results indicated a decrease in flow-induced hemolysis in the tube with a decrease in the ratio of the tube length to entrance length.

Keywords

Flow-induced hemolysis,Entrance length,Solid-like flow,Membrane oxygenators,Dialyzers,Artificial lungs,Catheters,Needles,Hollow fibers.

How to Cite this Article?

Salehpoor, K., Genin , J., and Smoake , J. A. (2011). A New Design Of Blood Flow Through Hollow Fibers For Prevention/Minimization Of Hemolysis For Possible Use In Blood Oxygenators And Dialyzers. i-manager’s Journal on Future Engineering and Technology, 6(2), 10-19. https://doi.org/10.26634/jfet.6.2.1321

References

[1]. Kawahito, S., Maeda, T., Motomura, T., Ishitoya, H., Takano, T., Nonaka, K., Linneweber, J., Ichikawa, S., Kawamura, M., Hanazaki, K., Glueck, J., and Nose, Y. (2002). Hemolytic Characteristics of Oxygenators During Clinical Extracorporeal Membrane Oxygenation. ASAIO Journal, 48, 636-639.
[2]. Van Meurs, K. P., Mikesell, G. T., Seale, W. R., Short, B. L., and Rivera, O. (1990). Maximum blood flow rates for arterial cannulae used in neonatal ECMO. ASAIO Trans., 36, M679-M681.
[3]. Yang, M., and Lin, C. (2000). In Vitro Characterization of the Occurrence of Hemolysis During Extracorporeal Blood Circulation Using a Mini Hemodialyzer. ASAIO Journal, 46(3), 293-297.
[4]. Sharp, M. K., and Fazal Mohammad, S. (1998). Scaling of Hemolysis in Needles and Catheters. Annals of Biomedical Engineering, 26, 788-797.
[5]. Kennedy, C., Angermuller, S., King, R., Noviello, S., Walker, J., Warden, J., and Vang, S. (1996). A comparison of hemolysis rates using intravenous catheters versus venipuncture tubes for obtaining blood samples. Journal Of Emergency Nursing, 22(6), 566-569.
[6]. Kameneva, M. V., Burgreen, G. W., Kono, K., Perko, B., Antaki, J. F., and Umezu, M. (2004). Effects of Turbulent Stresses upon Mechanical Hemolysis: Experimental and Computational Analysis. ASAIO Journal, 50, 418-423.
[7]. Middleman, S. (1972). Transport Phenomena in the Cardiovascular System, (pp. 76-86). Wiley-Interscience, New York.
[8]. Fung, Y. C. (2004). Biomechanics: Mechanical Properties of Living Tissues, (pp. 99-100). Springer, New York.
[9]. Arora, D., Behr, M., and Pasquali, M. (2004). A Tensorbased Measure for Estimating Blood Damage. Artificial Organs, 28(11), 1002-1015.
[10]. Sugii, Y., Okuda, R., Okamoto, K., and Madarame, H. (2005). Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas. Sci. Technol., 16, 1126-1130.
[11]. Pinotti, M. (2000). Is there Correlation between the Turbulent Eddies Size and Mechanical Hemolysis? J. Braz. Soc. Mech. Sci., 22(4), 565-569.
[12]. Rand, R.P. (1964). Mechanical Properties of the Red Cell Membrane, II: Viscoelastic Breakdown of the Membrane. Biophysical Journal, 4, 303-316.
[13]. Blackshear P.L. and Blackshear, G. L. (1987). Mechanical Hemolysis. In Skalak R. and Chien S. (Eds.), Handbook of Bioengineering (pp. 15.1-15.19). McGraw- Hill, New York.
[14]. Leverett, L.B., Hellums, J.D., Alfrey, C.P., and Lynch, E.C. (1972). Red blood cell damage by shear stress. Biophys J., 12(3), 257-273.
[15]. Gu, L., and Smith, W.A. (2005). Evaluation of Computational Models for Hemolysis Estimation. ASAIO Journal, 51(3), 202-207.
[16]. Yeleswarapu, K.K., Antaki, J.F., Kameneva, M.V., and Rajagopal, K.R. (2004). A mathematical model for shearinduced hemolysis. Artificial Organs, 19(7), 576-582.
[17]. Laugel, J.F. and Beissinger, R.L. (1983). Low stress shear-induced hemolysis in capillary flow. Trans Am Soc Artif Intern Organs., 29, 158-162.
[18]. Reinhard, P., Jorn, A., Klaus, S., Schugner, F., Schwindke, P., and Helmut, R. (2003). Shear stress related blood damage in laminar couette flow. Artificial Organs, 27(6), 517-529.
[19]. Hua, J., Erickson, L.E., Yiin, T.Y., and Glasgow, L.A. (1993). A review of the effects of shear and interfacial phenomena on cell viability. Crit Rev Biotechnol, 13(4), 305-328.
[20]. Salehpoor, K. (2007). A New Design Of Blood Flow Through Hollow Fibers For Prevention/minimization Of Hemolysis For Possible Use In Blood Oxygenators And Dialyzers. Ph.D. thesis, New Mexico State University, Las Cruces, NM.
[21]. White, F. M. (1999). Fluid Mechanics, (pp. 330-331). McGraw-Hill Companies, Inc., Boston.
[22]. Welty, J.R., Wicks, C.E., Wilson, R.E., and Rorrer, G. (2001). Fundamentals of Momentum, Heat, and Mass Transfer, (pp. 195-198). John Wiley & Sons, Inc., New York.
[23]. Ku, D.N. (1997). Blood Flow in Arteries. Annual Review of Fluid Mechanics, 29, 399-434.
[24]. Zamir, M. (2000). The Physics of Pulsatile Flow, (pp.57- 59). Springer-Verlag, New York.
[25]. Nichols, W.W. and O'Rourke, M.F. (2005). McDonald's Blood Flow in Arteries: Theoretical, experimental and clinical principles, (pp. 38-39). Hodder Arnold, London.
[26]. Mazumdar, J.N. (1992). Biofluid Mechanics, (pp.42- 44). World Scientific Publishing Co., New Jersey.
[27]. Lighthill, S.J. (1975). Mathematical Biofluiddynamics, (pp.202-203). Society for Industrial and Applied Mathematics, Philadelphia.
[28]. Fung, Y.C. (1997). Biomechanics: Circulation, (pp. 182-189). Springer-Verlag, New York.
[29]. Umezu, M., Yamada, T., Fujimasu, H., Fujimoto, T., Ranawake, M., Nogawa, A., and Kijima, T. (1996). Effects of surface roughness on mechanical hemolysis. Artificial Organs, 20(6), 575-578.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.